找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Computing: Image Processing Based Applications; J. K. Mandal,Soumen Banerjee Book 2020 Springer Nature Singapore Pte Ltd. 2020

[复制链接]
楼主: hexagon
发表于 2025-3-25 04:45:23 | 显示全部楼层
发表于 2025-3-25 10:59:21 | 显示全部楼层
发表于 2025-3-25 13:38:24 | 显示全部楼层
发表于 2025-3-25 16:41:50 | 显示全部楼层
A Comparative Study of Different Feature Descriptors for Video-Based Human Action Recognition,ndant features and assigning weights to the features left after elimination. Finally, the performance of the said feature descriptors on three standard benchmark video datasets . KTH, HMDB51, and UCF11 has been analyzed.
发表于 2025-3-25 22:24:35 | 显示全部楼层
发表于 2025-3-26 02:43:50 | 显示全部楼层
Image Denoising Using Generative Adversarial Network,g techniques are highlighted. Then, we state the underlying architecture of GAN and its modifications. Then, we discuss the way GANs are applied in the area of image denoising. We survey all recent works of GANs in image denoising and categories those work according to the type of input images. In t
发表于 2025-3-26 07:33:52 | 显示全部楼层
发表于 2025-3-26 11:58:22 | 显示全部楼层
An Optimized Intelligent Dermatologic Disease Classification Framework Based on IoT, vital role. In this work, an optimized classification method is proposed that can be useful in performing automated classification job in the limited infrastructure of the IoT environment. The input features are optimized in such a way so that it can be useful in faster and accurate classification
发表于 2025-3-26 12:38:19 | 显示全部楼层
Transfer Learning Coupled Convolution Neural Networks in Detecting Retinal Diseases Using OCT Imageous diseases. The training accuracies obtained for the six architectures, viz. four convolutional layer deep CNNs, VGG (VGG-16 and VGG-19) and Google’s Inception [Google’s Inception v3 (with or without transfer learning)], and Google’s Inception v4, are, respectively, 87.15%, 91.40%, 93.32%, 85.31%,
发表于 2025-3-26 19:07:09 | 显示全部楼层
Intelligent Computing: Image Processing Based Applications
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 02:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表