找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Computing Theories and Methodologies; 11th International C De-Shuang Huang,Vitoantonio Bevilacqua,Prashan Pre Conference procee

[复制链接]
楼主: Carter
发表于 2025-3-25 06:49:09 | 显示全部楼层
发表于 2025-3-25 08:03:59 | 显示全部楼层
发表于 2025-3-25 13:49:26 | 显示全部楼层
发表于 2025-3-25 16:21:41 | 显示全部楼层
发表于 2025-3-25 21:41:14 | 显示全部楼层
The Chaotic Measurement Matrix for Compressed Sensing,is paper, we present a simple and efficient measurement matrix named Incoherence Rotated Chaotic (IRC) matrix. We take advantage of the well pseudorandom of chaotic sequence, introduce the concept of the incoherence factor and rotation, and adopt QR decomposition to obtain the IRC measurement matrix
发表于 2025-3-26 02:42:50 | 显示全部楼层
发表于 2025-3-26 06:49:01 | 显示全部楼层
How to Detect Communities in Large Networks,sed, such as graph partitioning, hierarchical clustering, partitional clustering. Due to the high computational complexity of those algorithms, it is impossible to apply those algorithms to large networks. In order to solve the problem, Blondel introduced a new greedy approach named lovian to apply
发表于 2025-3-26 10:48:54 | 显示全部楼层
Self-adaptive Percolation Behavior Water Cycle Algorithm,towards the sea in the real world. In this paper, a new self-adaptive water cycle algorithm with percolation behavior is proposed. The percolation behavior is introduced to accelerate the convergence speed of proposed algorithm. At the same time, a self-adaptive rainfall process can generate the new
发表于 2025-3-26 14:51:44 | 显示全部楼层
An Online Supervised Learning Algorithm Based on Nonlinear Spike Train Kernels,es have been achieved in developing online learning approaches for spikingneural networks. This paper presents an online supervised learning algorithm based on nonlinear spike train kernels to process the spatiotemporal information, which is more biological interpretability. The main idea adopts onl
发表于 2025-3-26 17:12:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 09:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表