找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Computing Theories and Application; 18th International C De-Shuang Huang,Kang-Hyun Jo,Abir Hussain Conference proceedings 2022

[复制链接]
楼主: 口语
发表于 2025-3-23 10:40:58 | 显示全部楼层
发表于 2025-3-23 16:07:11 | 显示全部楼层
An Efficient Multi-objective Evolutionary Algorithm for a Practical Dynamic Pickup and Delivery Probn-first-out loading. This method decomposes the problem under consideration into many subproblems. The experimental results on 40 real-world logistics problem instances, offered by Huawei in the competition at ICAPS 2021, validate the high efficiency and effectiveness of our proposed method.
发表于 2025-3-23 20:40:52 | 显示全部楼层
Junchuang Cai,Qingling Zhu,Qiuzhen Lin,Jianqiang Li,Jianyong Chen,Zhong Ming
发表于 2025-3-24 01:37:49 | 显示全部楼层
Xiaoqiang Wu,Qingling Zhu,Qiuzhen Lin,Jianqiang Li,Jianyong Chen,Zhong Ming
发表于 2025-3-24 02:55:30 | 显示全部楼层
发表于 2025-3-24 08:34:22 | 显示全部楼层
C. M. Castorena,R. Alejo,E. Rendón,E. E. Granda-Gutíerrez,R. M. Valdovinos,G. Miranda-Piña
发表于 2025-3-24 13:14:46 | 显示全部楼层
Multi-party Evolution Stability Analysis of Electric Vehicles- Microgrid Interaction Mechanism also have the convergence speed of the game process less affected by the initial value, which can significantly reduce the game cost of all parties. Combining system dynamics and evolutionary game theory to study the interaction process of EV-MG provides an effective solution for microgrid to formu
发表于 2025-3-24 17:33:11 | 显示全部楼层
A Mixed-Factor Evolutionary Algorithm for Multi-objective Knapsack Problemts converge towards the true Pareto front. The algorithm proposed is operated on multi-objective knapsack problem. The effectiveness of MFEA is compared with five state-of-the-art algorithms, i.e., NSGA-II, NSGA-III, MOEA/D, SPEA2 and GrEA, in terms of five performance metrics. Simulation results de
发表于 2025-3-24 21:18:52 | 显示全部楼层
发表于 2025-3-25 02:59:23 | 显示全部楼层
A Multi-strategy Improved Fireworks Optimization Algorithmvation is adopted, improving the global and local searching ability of the algorithm. Combining various strategies improves the global and local searching ability of the algorithm, and accelerates the convergence speed. Finally, 8 benchmark test functions and optimization problems of Design of Reduc
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 00:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表