找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligence Science IV; 5th IFIP TC 12 Inter Zhongzhi Shi,Yaochu Jin,Xiangrong Zhang Conference proceedings 2022 IFIP International Federa

[复制链接]
楼主: 恳求
发表于 2025-3-28 15:49:52 | 显示全部楼层
发表于 2025-3-28 22:06:58 | 显示全部楼层
Fast Node Selection of Networked Radar Based on Transfer Reinforcement Learningbecoming more and more critical for data fusion sharing and network collaboration. However, due to the large number and wide range of nodes in the networked radar system, there exists a redundancy problem in radar node assignment, which causes additional resource consumption and slows down the task
发表于 2025-3-29 02:59:17 | 显示全部楼层
发表于 2025-3-29 06:37:04 | 显示全部楼层
发表于 2025-3-29 07:26:49 | 显示全部楼层
发表于 2025-3-29 14:43:16 | 显示全部楼层
发表于 2025-3-29 19:04:40 | 显示全部楼层
发表于 2025-3-29 19:43:54 | 显示全部楼层
发表于 2025-3-30 02:10:36 | 显示全部楼层
A Two-Branch Neural Network Based on Superpixel Segmentation and Auxiliary Samplesonal homogeneity of the ground objects. We propose a two-branch neural network based on superpixel segmentation and auxiliary samples (TBN-SPAS) for HSI classification. TBN-SPAS uses superpixel segmentation to find samples within the superpixel, which have high spatial correlation with the sample to
发表于 2025-3-30 07:17:47 | 显示全部楼层
Augmentation Based Synthetic Sampling and Ensemble Techniques for Imbalanced Data Classificationlars proposed various approaches such as undersampling majority class, oversampling minority class, synthetic Minority Oversampling (SMOTE) technique, Proximity Weighted Random Affine Shadowsampling (ProWRAS), etc. However, this work proposes a new method called Augmentation Based Synthetic Sampling
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 21:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表