找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Integration of Constraint Programming, Artificial Intelligence, and Operations Research; 20th International C Andre A. Cire Conference proc

[复制链接]
楼主: 使委屈
发表于 2025-3-28 17:23:50 | 显示全部楼层
,Online Learning for Scheduling MIP Heuristics, attributed to heuristics. Since their behavior is highly instance-dependent, relying on hard-coded rules derived from empirical testing on a large heterogeneous corpora of benchmark instances might lead to sub-optimal performance. In this work, we propose an online learning approach that adapts the
发表于 2025-3-28 22:39:28 | 显示全部楼层
,Contextual Robust Optimisation with Uncertainty Quantification,ity of optimisation to parameter estimation. This is achieved by integrating uncertainty quantification (UQ) methods for supervised learning into the ambiguity sets for distributionally robust optimisation (DRO). The pipelines leverage learning to produce contextual/conditional ambiguity sets from s
发表于 2025-3-29 00:30:41 | 显示全部楼层
发表于 2025-3-29 07:08:02 | 显示全部楼层
发表于 2025-3-29 11:14:21 | 显示全部楼层
,ZDD-Based Algorithmic Framework for Solving Shortest Reconfiguration Problems,ams (ZDDs), a data structure for representing families of sets. In general, a reconfiguration problem checks if there is a step-by-step transformation between two given feasible solutions (e.g., independent sets of an input graph) of a fixed search problem, such that all intermediate results are als
发表于 2025-3-29 11:30:00 | 显示全部楼层
,Neural Networks for Local Search and Crossover in Vehicle Routing: A Possible Overkill?,achine learning algorithms. In this study, we investigate the use of predictions from graph neural networks (GNNs) in the form of heatmaps to improve the Hybrid Genetic Search (HGS), a state-of-the-art algorithm for the Capacitated Vehicle Routing Problem (CVRP). The crossover and local-search compo
发表于 2025-3-29 16:19:42 | 显示全部楼层
发表于 2025-3-29 19:44:26 | 显示全部楼层
发表于 2025-3-30 01:26:45 | 显示全部楼层
发表于 2025-3-30 07:57:46 | 显示全部楼层
,Scalable and Near-Optimal ,-Tube Clusterwise Regression, distinct regression trends. Due to the inherent difficulty in simultaneously optimizing clustering and regression objectives, it is not surprising that existing optimal CLR approaches do not scale beyond 100 s of data points. In an effort to provide more scalable and optimal CLR methods, we propose
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 11:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表