找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Innovations in Multivariate Statistical Modeling; Navigating Theoretic Andriëtte Bekker,Johannes T. Ferreira,Ding-Geng Ch Book 2022 The Edi

[复制链接]
楼主: encroach
发表于 2025-3-26 22:57:06 | 显示全部楼层
发表于 2025-3-27 03:34:36 | 显示全部楼层
A Flexible Matrix-Valued Response Regression for Skewed Datapplications, outliers usually contaminate matrix-valued data. This chapter introduces a new flexible family of matrix-variate distributions that includes the matrix normal distribution as a particular member. By considering the introduced distribution for the error term, we develop a regression mode
发表于 2025-3-27 09:17:16 | 显示全部楼层
Multivariate Functional Singular Spectrum Analysis: A Nonparametric Approach for Analyzing Multivari a multivariate functional time series (MFTS) into interpretable partitions such as mean, periodic, and trend components. The approach is flexible in the sense that the MFTS signal may be composed of functional observations such as curves and surfaces and the offered flexibility can lead to richer s
发表于 2025-3-27 13:01:05 | 显示全部楼层
发表于 2025-3-27 16:52:30 | 显示全部楼层
Multivariate Count Data Regression Models and Their Applications some distributions generated from the .-.{.} method will be defined. Models that allow both positive and negative correlation between any pair of response variables will be considered. The model parameters will be estimated by using the method of maximum likelihood estimation. The application of th
发表于 2025-3-27 20:42:01 | 显示全部楼层
发表于 2025-3-27 22:02:17 | 显示全部楼层
发表于 2025-3-28 02:21:29 | 显示全部楼层
发表于 2025-3-28 08:16:08 | 显示全部楼层
A Generalized Quadratic Garrote Approach Towards Ridge Regression AnalysisIn the standard form of ridge regression analysis, all model coefficients are shrunken towards zero at a similar rate regardless of the importance of each variable. In this paper, we provide an extension of the non-negative garrote method to give more flexibility to the ridge regression approach for
发表于 2025-3-28 12:59:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 08:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表