找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Information-Driven Machine Learning; Data Science as an E Gerald Friedland Textbook 2024 The Editor(s) (if applicable) and The Author(s), u

[复制链接]
查看: 12324|回复: 62
发表于 2025-3-21 18:36:58 | 显示全部楼层 |阅读模式
书目名称Information-Driven Machine Learning
副标题Data Science as an E
编辑Gerald Friedland
视频video
概述Tackles the ‘why‘ questions of data science and deep learning.Interdisciplinary approach to model engineering.Information measurements for MLOps, Data drift, bias
图书封面Titlebook: Information-Driven Machine Learning; Data Science as an E Gerald Friedland Textbook 2024 The Editor(s) (if applicable) and The Author(s), u
描述.This groundbreaking book transcends traditional machine learning approaches by introducing information measurement methodologies that revolutionize the field...Stemming from a UC Berkeley seminar on experimental design for machine learning tasks, these techniques aim to overcome the ‘black box‘ approach of machine learning by reducing conjectures such as magic numbers (hyper-parameters) or model-type bias. Information-based machine learning enables data quality measurements, a priori task complexity estimations, and reproducible design of data science experiments. The benefits include significant size reduction, increased explainability, and enhanced resilience of models, all contributing to advancing the discipline‘s robustness and credibility...While bridging the gap between machine learning and disciplines such as physics, information theory, and computer engineering, this textbook maintains an accessible and comprehensive style, making complex topics digestible fora broad readership. .Information-Driven Machine Learning. explores the synergistic harmony among these disciplines to enhance our understanding of data science modeling. Instead of solely focusing on the "how," this
出版日期Textbook 2024
关键词machine learning experiments; information theory; information measurements; decision trees; neural netwo
版次1
doihttps://doi.org/10.1007/978-3-031-39477-5
isbn_softcover978-3-031-39479-9
isbn_ebook978-3-031-39477-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Information-Driven Machine Learning影响因子(影响力)




书目名称Information-Driven Machine Learning影响因子(影响力)学科排名




书目名称Information-Driven Machine Learning网络公开度




书目名称Information-Driven Machine Learning网络公开度学科排名




书目名称Information-Driven Machine Learning被引频次




书目名称Information-Driven Machine Learning被引频次学科排名




书目名称Information-Driven Machine Learning年度引用




书目名称Information-Driven Machine Learning年度引用学科排名




书目名称Information-Driven Machine Learning读者反馈




书目名称Information-Driven Machine Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:52 | 显示全部楼层
发表于 2025-3-22 03:00:37 | 显示全部楼层
发表于 2025-3-22 07:58:56 | 显示全部楼层
发表于 2025-3-22 08:42:57 | 显示全部楼层
Explainability,the decisions and predictions made by the model (Gilpin et al. (Explaining explanations: An overview of interpretability of machine learning, . pp. 80–89, 2018)). It contrasts with the “black box” concept in machine learning (see Chap. . where even its designers cannot explain why a model arrived at a specific decision.
发表于 2025-3-22 16:22:54 | 显示全部楼层
978-3-031-39479-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 21:06:33 | 显示全部楼层
发表于 2025-3-22 22:44:54 | 显示全部楼层
http://image.papertrans.cn/i/image/466021.jpg
发表于 2025-3-23 03:23:48 | 显示全部楼层
发表于 2025-3-23 09:10:37 | 显示全部楼层
Meta-Math: Exploring the Limits of Modeling,In this chapter, we will explore mathematical and statistical modeling in general and explore their limits. That is, what can we expect from modeling and what not. What are the limits of the approach we call “modeling”?
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 06:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表