找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Information Fusion; Machine Learning Met Jinxing Li,Bob Zhang,David Zhang Book 2022 Springer Nature Singapore Pte Ltd. & Higher Education P

[复制链接]
查看: 35609|回复: 42
发表于 2025-3-21 17:45:10 | 显示全部楼层 |阅读模式
书目名称Information Fusion
副标题Machine Learning Met
编辑Jinxing Li,Bob Zhang,David Zhang
视频video
概述Reviews state-of-the-art techniques for information fusion.Presents typical applications of information fusion, ranging from low-level to high-level tasks.Demonstrates the benefits of applying advance
图书封面Titlebook: Information Fusion; Machine Learning Met Jinxing Li,Bob Zhang,David Zhang Book 2022 Springer Nature Singapore Pte Ltd. & Higher Education P
描述.In the big data era, increasing information can be extracted from the same source object or scene. For instance, a person can be verified based on their fingerprint, palm print, or iris information, and a given image can be represented by various types of features, including its texture, color, shape, etc. These multiple types of data extracted from a single object are called multi-view, multi-modal or multi-feature data. Many works have demonstrated that the utilization of all available information at multiple abstraction levels (measurements, features, decisions) helps to obtain more complex, reliable and accurate information and to maximize performance in a range of applications..This book provides an overview of information fusion technologies, state-of-the-art techniques and their applications. It covers a variety of essential information fusion methods based on different techniques, including sparse/collaborative representation, kernel strategy,Bayesian models, metric learning, weight/classifier methods, and deep learning. The typical applications of these proposed fusion approaches are also presented, including image classification, domain adaptation, disease detection, ima
出版日期Book 2022
关键词Information Fusion; Data Fusion; Multi-view data; Multi-modal data; Multi-feature data; Multi-view Learni
版次1
doihttps://doi.org/10.1007/978-981-16-8976-5
isbn_softcover978-981-16-8978-9
isbn_ebook978-981-16-8976-5
copyrightSpringer Nature Singapore Pte Ltd. & Higher Education Press, China 2022
The information of publication is updating

书目名称Information Fusion影响因子(影响力)




书目名称Information Fusion影响因子(影响力)学科排名




书目名称Information Fusion网络公开度




书目名称Information Fusion网络公开度学科排名




书目名称Information Fusion被引频次




书目名称Information Fusion被引频次学科排名




书目名称Information Fusion年度引用




书目名称Information Fusion年度引用学科排名




书目名称Information Fusion读者反馈




书目名称Information Fusion读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:39:30 | 显示全部楼层
发表于 2025-3-22 02:32:29 | 显示全部楼层
发表于 2025-3-22 06:31:04 | 显示全部楼层
发表于 2025-3-22 11:23:29 | 显示全部楼层
Information Fusion Based on Deep Learning,er architectures to more powerfully model the complex distributions of the real-world datasets. This chapter proposes two deep learning based fusion methods that can fuse two branches of networks into a unique feature. After reading this chapter people can have preliminary knowledge on deep learning based fusion methods.
发表于 2025-3-22 13:34:02 | 显示全部楼层
Jinxing Li,Bob Zhang,David ZhangReviews state-of-the-art techniques for information fusion.Presents typical applications of information fusion, ranging from low-level to high-level tasks.Demonstrates the benefits of applying advance
发表于 2025-3-22 19:22:45 | 显示全部楼层
http://image.papertrans.cn/i/image/465038.jpg
发表于 2025-3-23 00:50:02 | 显示全部楼层
978-981-16-8978-9Springer Nature Singapore Pte Ltd. & Higher Education Press, China 2022
发表于 2025-3-23 02:13:01 | 显示全部楼层
发表于 2025-3-23 07:58:39 | 显示全部楼层
learning, weight/classifier methods, and deep learning. The typical applications of these proposed fusion approaches are also presented, including image classification, domain adaptation, disease detection, ima978-981-16-8978-9978-981-16-8976-5
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 08:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表