找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Information Criteria and Statistical Modeling; Sadanori Konishi,Genshiro Kitagawa Book 2008 Springer-Verlag New York 2008 Akaike informati

[复制链接]
查看: 47390|回复: 44
发表于 2025-3-21 17:48:29 | 显示全部楼层 |阅读模式
书目名称Information Criteria and Statistical Modeling
编辑Sadanori Konishi,Genshiro Kitagawa
视频video
概述With the development of modeling techniques, it has been required to construct model selection criteria, relaxing the assumptions imposed AIC and BIC.Includes supplementary material:
丛书名称Springer Series in Statistics
图书封面Titlebook: Information Criteria and Statistical Modeling;  Sadanori Konishi,Genshiro Kitagawa Book 2008 Springer-Verlag New York 2008 Akaike informati
描述.The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been reported in various fields of natural sciences, social sciences and engineering...One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz’s Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation criteria. A secondary objective is to provide a theoretical basis for the analysis and extension of information criteria via a statistical functional approach. A generalized information criterion (GIC) and a bootstrap information criterion are presented, which provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach. .
出版日期Book 2008
关键词Akaike information criterion; Bayesian approach; Computer; Estimator; Information; Likelihood; Statistical
版次1
doihttps://doi.org/10.1007/978-0-387-71887-3
isbn_softcover978-1-4419-2456-8
isbn_ebook978-0-387-71887-3Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York 2008
The information of publication is updating

书目名称Information Criteria and Statistical Modeling影响因子(影响力)




书目名称Information Criteria and Statistical Modeling影响因子(影响力)学科排名




书目名称Information Criteria and Statistical Modeling网络公开度




书目名称Information Criteria and Statistical Modeling网络公开度学科排名




书目名称Information Criteria and Statistical Modeling被引频次




书目名称Information Criteria and Statistical Modeling被引频次学科排名




书目名称Information Criteria and Statistical Modeling年度引用




书目名称Information Criteria and Statistical Modeling年度引用学科排名




书目名称Information Criteria and Statistical Modeling读者反馈




书目名称Information Criteria and Statistical Modeling读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:42:56 | 显示全部楼层
发表于 2025-3-22 03:39:37 | 显示全部楼层
发表于 2025-3-22 08:37:33 | 显示全部楼层
发表于 2025-3-22 09:25:21 | 显示全部楼层
发表于 2025-3-22 13:14:05 | 显示全部楼层
发表于 2025-3-22 21:05:58 | 显示全部楼层
Statistical Modeling by GIC,ss can be viewed as a model selection and evaluation problem. This chapter addresses these issues as a model selection and evaluation problem and provides criteria for evaluating various types of statistical models.
发表于 2025-3-23 00:05:36 | 显示全部楼层
Bootstrap Information Criterion,983), Wong (1983), Konishi and Kitagawa (1996), Ishiguro et al. (1997), Cavanaugh and Shumway (1997), and Shibata (1997)], obtained by applying the bootstrap methods originally proposed by Efron (1979), permits the evaluation of models estimated through complex processes.
发表于 2025-3-23 04:07:43 | 显示全部楼层
Bayesian Information Criteria,particular, Section 9.3 gives examples of analytical evaluations of bias correction for linear Gaussian Bayes models. Section 9.4 describes, for general Bayesian models, how to estimate the asymptotic biases and how to perform the second-order bias correction by means of Laplace’s method for integrals.
发表于 2025-3-23 05:46:01 | 显示全部楼层
0172-7397 provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach. .978-1-4419-2456-8978-0-387-71887-3Series ISSN 0172-7397 Series E-ISSN 2197-568X
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 04:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表