找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Infinite-Dimensional Dynamical Systems in Mechanics and Physics; Roger Temam Book 19881st edition Springer-Verlag New York Inc. 1988 calcu

[复制链接]
楼主: irritants
发表于 2025-3-27 00:55:51 | 显示全部楼层
The Cone and Squeezing Properties. Inertial Manifolds,ns and generalizations C. Foias, G. Sell, and R. Temam [1], [2], C. Foias, B. Nicolaenko, G. Sell, and R. Temam [1], [2]. The reader is referred to Remark 4.3 for some bibliographical references on this rapidly expanding subject.
发表于 2025-3-27 03:28:24 | 显示全部楼层
发表于 2025-3-27 07:03:21 | 显示全部楼层
发表于 2025-3-27 12:39:39 | 显示全部楼层
,Attractors of the Dissipative Evolution Equation of the First Order in Time: Reaction—Diffusion Equse, we present briefly the physical model and the governing equations; then we present the mathematical setting of the equations which leads to the introduction of the corresponding semigroup {S(t)}.≥0.
发表于 2025-3-27 16:26:17 | 显示全部楼层
Springer-Verlag New York Inc. 1988
发表于 2025-3-27 21:15:10 | 显示全部楼层
发表于 2025-3-28 01:09:44 | 显示全部楼层
发表于 2025-3-28 05:57:04 | 显示全部楼层
,General Introduction. The User’s Guide,In this General Introduction we intend to focus on the general motivations and general ideas underlying this work, separating them from the mathematical technicalities, and thus developing further the presentation in the Preface.
发表于 2025-3-28 07:53:54 | 显示全部楼层
Explicit Bounds on the Number of Degrees of Freedom and the Dimension of Attractors of Some PhysicaThis chapter is aimed at applying the general results of Chapter V to the attractors of all the physical equations that we have considered in Chapters III and IV. It appears as one of the culminating points of the theory of attractors for dissipative partial differential equations presented in this book.
发表于 2025-3-28 12:23:57 | 显示全部楼层
Non-Well-Posed Problems, Unstable Manifolds, Lyapunov Functions, and Lower Bounds on Dimensions,Three different topics are addressed in this chapter:.The first one is that of non-well-posed problems.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-11 01:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表