找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Infinite Linear Groups; An Account of the Gr Bertram A. F. Wehrfritz Book 1973 Springer-Verlag Berlin Heidelberg 1973 Abelian group.Finite.

[复制链接]
楼主: 清楚明确
发表于 2025-3-23 10:52:42 | 显示全部楼层
The Homomorphism Theorems,y free abelian group, but not every abelian group, has faithful representations of finite degree over some field. This raises two questions. Firstly, for which classes-of-groups ? are homomorphic images of linear ?-groups necessarily isomorphic to linear groups? Secondly, given an arbitrary linear g
发表于 2025-3-23 16:33:54 | 显示全部楼层
The Jordan Decomposition and Splittable Linear Groups,. is unipotent if and only if all the eigenvalues of . are 1, which happens if and only if there exists an element g of GL(.) such that . is unitriangular. In this case . has infinite order if char . = 0 and is a .-element if char .>0.
发表于 2025-3-23 21:19:42 | 显示全部楼层
发表于 2025-3-24 00:49:45 | 显示全部楼层
发表于 2025-3-24 06:13:30 | 显示全部楼层
发表于 2025-3-24 07:21:54 | 显示全部楼层
A Localizing Technique and Applications,ues we have seldom used the linear structure of the matrix ring to accomplish this. The object of this chapter is to describe a general method for extending theorems from finitely generated linear groups to more general linear groups that relies heavily on the linearity. Although the fundamental res
发表于 2025-3-24 11:08:32 | 显示全部楼层
Appendix on Algebraic Groups,sed subgroups of GL(., .). Our first aim is to give an account of these results, and in most cases also their proofs. In a number of places in this book we have skirted round some of these properties of algebraic groups and here and there we have come very close to using them. I hope that this chapt
发表于 2025-3-24 18:25:25 | 显示全部楼层
发表于 2025-3-24 19:56:51 | 显示全部楼层
https://doi.org/10.1007/978-3-642-87081-1Abelian group; Finite; Group theory; Groups; Groups of Matrices; Morphism; Unendliche lineare Gruppe; matri
发表于 2025-3-25 02:40:17 | 显示全部楼层
978-3-642-87083-5Springer-Verlag Berlin Heidelberg 1973
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-4 11:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表