找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Infinite Dimensional Kähler Manifolds; Alan Huckleberry,Tilmann Wurzbacher Book 2001 Springer Basel AG 2001 Complex analysis.Geometry.Matr

[复制链接]
查看: 45376|回复: 37
发表于 2025-3-21 19:06:12 | 显示全部楼层 |阅读模式
书目名称Infinite Dimensional Kähler Manifolds
编辑Alan Huckleberry,Tilmann Wurzbacher
视频videohttp://file.papertrans.cn/465/464625/464625.mp4
丛书名称Oberwolfach Seminars
图书封面Titlebook: Infinite Dimensional Kähler Manifolds;  Alan Huckleberry,Tilmann Wurzbacher Book 2001 Springer Basel AG 2001 Complex analysis.Geometry.Matr
描述Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kähler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Bor
出版日期Book 2001
关键词Complex analysis; Geometry; Matrix; Monodromy; Tensor; curvature; diffeomorphism; differential geometry; gro
版次1
doihttps://doi.org/10.1007/978-3-0348-8227-9
isbn_softcover978-3-7643-6602-5
isbn_ebook978-3-0348-8227-9Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel AG 2001
The information of publication is updating

书目名称Infinite Dimensional Kähler Manifolds影响因子(影响力)




书目名称Infinite Dimensional Kähler Manifolds影响因子(影响力)学科排名




书目名称Infinite Dimensional Kähler Manifolds网络公开度




书目名称Infinite Dimensional Kähler Manifolds网络公开度学科排名




书目名称Infinite Dimensional Kähler Manifolds被引频次




书目名称Infinite Dimensional Kähler Manifolds被引频次学科排名




书目名称Infinite Dimensional Kähler Manifolds年度引用




书目名称Infinite Dimensional Kähler Manifolds年度引用学科排名




书目名称Infinite Dimensional Kähler Manifolds读者反馈




书目名称Infinite Dimensional Kähler Manifolds读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:13:38 | 显示全部楼层
发表于 2025-3-22 03:41:48 | 显示全部楼层
Book 2001r the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kähler manifolds and associated group actions which grew out of a DMV-S
发表于 2025-3-22 04:36:43 | 显示全部楼层
发表于 2025-3-22 12:25:36 | 显示全部楼层
发表于 2025-3-22 13:00:57 | 显示全部楼层
978-3-7643-6602-5Springer Basel AG 2001
发表于 2025-3-22 18:51:22 | 显示全部楼层
发表于 2025-3-22 22:30:44 | 显示全部楼层
Introduction to Group Actions in Symplectic and Complex Geometry,In this preparatory chapter certain basic results on differentiable manifolds are outlined. Standard references should include . and ..
发表于 2025-3-23 02:54:37 | 显示全部楼层
发表于 2025-3-23 07:59:20 | 显示全部楼层
Oberwolfach Seminarshttp://image.papertrans.cn/i/image/464625.jpg
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 18:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表