找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Infinite Dimensional Analysis, Quantum Probability and Applications; QP41 Conference, Al Luigi Accardi,Farrukh Mukhamedov,Ahmed Al Rawashd

[复制链接]
楼主: magnify
发表于 2025-3-28 17:40:07 | 显示全部楼层
Trace Decreasing Quantum Dynamical Maps: Divisibility and Entanglement Dynamics conditional output states as if the dynamics were trace preserving. Here we show that this approach leads to incorrect conclusions about the dynamics divisibility, namely, one can observe an increase in the trace distance or the system-ancilla entanglement although the trace decreasing dynamics is
发表于 2025-3-28 18:56:29 | 显示全部楼层
发表于 2025-3-29 01:33:15 | 显示全部楼层
发表于 2025-3-29 06:03:30 | 显示全部楼层
Hilbert von Neumann Modules , Concrete von Neumann Modulest. The von Neumann or .–objects among the Hilbert (.–)modules are around since the first papers by Paschke [.] and Rieffel [., .] that lift Kaplansky’s setting [.] to modules over noncommutative .–algebras. While the formal definition of .–. is due to Baillet, Denizeau, and Havet [.], the one of . a
发表于 2025-3-29 10:54:43 | 显示全部楼层
发表于 2025-3-29 13:26:30 | 显示全部楼层
A Mean-Field Laser Quantum Master Equationence of a unique regular family . of density matrices which is a stationary solution. In case a relevant parameter . is less than 1, we prove that any regular solution converges exponentially fast to the equilibrium. A locally exponential stable limit cycle arises at the regular stationary state as
发表于 2025-3-29 18:45:40 | 显示全部楼层
发表于 2025-3-29 21:43:30 | 显示全部楼层
Solutions of Infinite Dimensional Partial Differential Equationsnite dimensional distributions space. The technique we use is the representation of this infinite dimensional Laplacian as a convolution operator. This representation enables us to apply the convolution calculus on a suitable distribution space to obtain explicit solution of some perturbed evolution
发表于 2025-3-30 02:36:28 | 显示全部楼层
发表于 2025-3-30 07:27:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 06:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表