找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Industrial Recommender System; Principles, Technolo Lantao Hu,Yueting Li,Kexin Yi Book 2024 Publishing House of Electronics Industry, Beiji

[复制链接]
查看: 49318|回复: 45
发表于 2025-3-21 16:14:43 | 显示全部楼层 |阅读模式
书目名称Industrial Recommender System
副标题Principles, Technolo
编辑Lantao Hu,Yueting Li,Kexin Yi
视频video
概述Provides a comprehensive introduction to almost all aspects of Industrial Recommender System.Incorporates practical business issues from real word, providing general optimization strategies and techni
图书封面Titlebook: Industrial Recommender System; Principles, Technolo Lantao Hu,Yueting Li,Kexin Yi Book 2024 Publishing House of Electronics Industry, Beiji
描述.Recommender systems, as a highly popular AI technology in recent years, have been widely applied across various industries. They have transformed the way we interact with technology, influencing our choices and shaping our experiences. This book provides a comprehensive introduction to industrial recommender systems, starting with the overview of the technical framework, gradually delving into each core module such as content understanding, user profiling, recall, ranking, re-ranking and so on, and introducing the key technologies and practices in enterprises...The book also addresses common challenges in recommendation cold start, recommendation bias and debiasing. Additionally, it introduces advanced technologies in the field, such as reinforcement learning, causal inference...Professionals working in the fields of recommender systems, computational advertising, and search will find this book valuable. It is also suitable for undergraduate, graduate, and doctoral students majoring in artificial intelligence, computer science, software engineering, and related disciplines. Furthermore, it caters to readers with an interest in recommender systems, providing them with an understand
出版日期Book 2024
关键词Recommender System; Personalized recommendation; Deep Learning; Machine Learning; Artificial Intelligenc
版次1
doihttps://doi.org/10.1007/978-981-97-2581-6
isbn_softcover978-981-97-2583-0
isbn_ebook978-981-97-2581-6
copyrightPublishing House of Electronics Industry, Beijing, China 2024
The information of publication is updating

书目名称Industrial Recommender System影响因子(影响力)




书目名称Industrial Recommender System影响因子(影响力)学科排名




书目名称Industrial Recommender System网络公开度




书目名称Industrial Recommender System网络公开度学科排名




书目名称Industrial Recommender System被引频次




书目名称Industrial Recommender System被引频次学科排名




书目名称Industrial Recommender System年度引用




书目名称Industrial Recommender System年度引用学科排名




书目名称Industrial Recommender System读者反馈




书目名称Industrial Recommender System读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:25:17 | 显示全部楼层
发表于 2025-3-22 00:29:19 | 显示全部楼层
发表于 2025-3-22 08:18:55 | 显示全部楼层
发表于 2025-3-22 10:58:40 | 显示全部楼层
发表于 2025-3-22 16:10:17 | 显示全部楼层
,The Tool for System Evolution—AB Testing Platform,deep impression on the readers. However, the designers and users of recommender systems also need a mature and sophisticated system for evaluating and indicating recommender systems to guide the evolution of recommender system technology, which is the protagonist of this chapter—the AB testing platform.
发表于 2025-3-22 19:17:55 | 显示全部楼层
发表于 2025-3-22 23:41:46 | 显示全部楼层
发表于 2025-3-23 01:25:45 | 显示全部楼层
The All-Encompassing Recall Stage,iltering. Serving as the primary information filter, the recall stage sifts through vast amounts of content across multiple dimensions to identify the most relevant information that users are likely to find interesting. This filtered content is then passed on to subsequent relevance ranking technolo
发表于 2025-3-23 07:32:08 | 显示全部楼层
,The Tool for System Evolution—AB Testing Platform,hness of recall, the comprehensiveness of portraits, the embedded thinking of content understanding, the balance of re-ranking, etc., have all left a deep impression on the readers. However, the designers and users of recommender systems also need a mature and sophisticated system for evaluating and
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 16:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表