书目名称 | Industrial Recommender System | 副标题 | Principles, Technolo | 编辑 | Lantao Hu,Yueting Li,Kexin Yi | 视频video | | 概述 | Provides a comprehensive introduction to almost all aspects of Industrial Recommender System.Incorporates practical business issues from real word, providing general optimization strategies and techni | 图书封面 |  | 描述 | .Recommender systems, as a highly popular AI technology in recent years, have been widely applied across various industries. They have transformed the way we interact with technology, influencing our choices and shaping our experiences. This book provides a comprehensive introduction to industrial recommender systems, starting with the overview of the technical framework, gradually delving into each core module such as content understanding, user profiling, recall, ranking, re-ranking and so on, and introducing the key technologies and practices in enterprises...The book also addresses common challenges in recommendation cold start, recommendation bias and debiasing. Additionally, it introduces advanced technologies in the field, such as reinforcement learning, causal inference...Professionals working in the fields of recommender systems, computational advertising, and search will find this book valuable. It is also suitable for undergraduate, graduate, and doctoral students majoring in artificial intelligence, computer science, software engineering, and related disciplines. Furthermore, it caters to readers with an interest in recommender systems, providing them with an understand | 出版日期 | Book 2024 | 关键词 | Recommender System; Personalized recommendation; Deep Learning; Machine Learning; Artificial Intelligenc | 版次 | 1 | doi | https://doi.org/10.1007/978-981-97-2581-6 | isbn_softcover | 978-981-97-2583-0 | isbn_ebook | 978-981-97-2581-6 | copyright | Publishing House of Electronics Industry, Beijing, China 2024 |
The information of publication is updating
|
|