找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Inductive Logic Programming; 29th International C Dimitar Kazakov,Can Erten Conference proceedings 2020 Springer Nature Switzerland AG 2020

[复制链接]
查看: 35992|回复: 50
发表于 2025-3-21 16:05:43 | 显示全部楼层 |阅读模式
书目名称Inductive Logic Programming
副标题29th International C
编辑Dimitar Kazakov,Can Erten
视频videohttp://file.papertrans.cn/464/463888/463888.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Inductive Logic Programming; 29th International C Dimitar Kazakov,Can Erten Conference proceedings 2020 Springer Nature Switzerland AG 2020
描述.This book constitutes the refereed conference proceedings of the 29th International Conference on Inductive Logic Programming, ILP 2019, held in Plovdiv, Bulgaria, in September 2019...The 11 papers presented were carefully reviewed and selected from numerous submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data..
出版日期Conference proceedings 2020
关键词artificial intelligence; computer programming; computer systems; data mining; formal logic; inductive log
版次1
doihttps://doi.org/10.1007/978-3-030-49210-6
isbn_softcover978-3-030-49209-0
isbn_ebook978-3-030-49210-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Inductive Logic Programming影响因子(影响力)




书目名称Inductive Logic Programming影响因子(影响力)学科排名




书目名称Inductive Logic Programming网络公开度




书目名称Inductive Logic Programming网络公开度学科排名




书目名称Inductive Logic Programming被引频次




书目名称Inductive Logic Programming被引频次学科排名




书目名称Inductive Logic Programming年度引用




书目名称Inductive Logic Programming年度引用学科排名




书目名称Inductive Logic Programming读者反馈




书目名称Inductive Logic Programming读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:21:26 | 显示全部楼层
Rapid Restart Hill Climbing for Learning Description Logic Concepts,r expansion by traversing the search tree in a hill climbing manner and rapidly restarts with one-step backtracking after each expansion. We provide an implementation of RRHC in the DL-Learner framework and compare its performance with CELOE using standard benchmarks.
发表于 2025-3-22 03:57:36 | 显示全部楼层
发表于 2025-3-22 05:59:09 | 显示全部楼层
Towards Meta-interpretive Learning of Programming Language Semantics, scenario, including abstracting over function symbols, nonterminating examples, and learning non-observed predicates, and propose extensions to Metagol helpful for overcoming these challenges, which may prove useful in other domains.
发表于 2025-3-22 09:09:11 | 显示全部楼层
Towards an ILP Application in Machine Ethics,on approach relies on the non-monotonic features of Answer Set Programming (ASP) and applies ILP. The approach is illustrated by means of examples taken from the preliminary tests conducted with a couple of state-of-the-art ILP algorithms for learning ASP rules.
发表于 2025-3-22 15:06:43 | 显示全部楼层
发表于 2025-3-22 17:07:23 | 显示全部楼层
Learning Logic Programs from Noisy State Transition Data,sed to understand the underlying model. In this paper, we propose a Differentiable Learning from Interpretation Transition (.-LFIT) algorithm, that can simultaneously output logic programs fully explaining the state transitions, and also learn from data containing noise and error.
发表于 2025-3-22 22:33:47 | 显示全部楼层
发表于 2025-3-23 03:12:11 | 显示全部楼层
0302-9743 xamples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data..978-3-030-49209-0978-3-030-49210-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-23 08:00:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 22:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表