找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Individual and Collective Graph Mining; Principles, Algorith Danai Koutra,Christos Faloutsos Book 2018 Springer Nature Switzerland AG 2018

[复制链接]
查看: 42156|回复: 39
发表于 2025-3-21 18:01:28 | 显示全部楼层 |阅读模式
书目名称Individual and Collective Graph Mining
副标题Principles, Algorith
编辑Danai Koutra,Christos Faloutsos
视频video
丛书名称Synthesis Lectures on Data Mining and Knowledge Discovery
图书封面Titlebook: Individual and Collective Graph Mining; Principles, Algorith Danai Koutra,Christos Faloutsos Book 2018 Springer Nature Switzerland AG 2018
描述Graphs naturally represent information ranging from links between web pages, to communication in email networks, to connections between neurons in our brains. These graphs often span billions of nodes and interactions between them. Within this deluge of interconnected data, how can we find the most important structures and summarize them? How can we efficiently visualize them? How can we detect anomalies that indicate critical events, such as an attack on a computer system, disease formation in the human brain, or the fall of a company?This book presents scalable, principled discovery algorithms that combine globality with locality to make sense of one or more graphs. In addition to fast algorithmic methodologies, we also contribute graph-theoretical ideas and models, and real-world applications in two main areas:..Individual Graph Mining: We show how to interpretably summarize a single graph by identifying its important graph structures. We complement summarization with inference, which leverages information about few entities (obtained via summarization or other methods) and the network structure to efficiently and effectively learn information about the unknown entities...Collec
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-031-01911-1
isbn_softcover978-3-031-00783-5
isbn_ebook978-3-031-01911-1Series ISSN 2151-0067 Series E-ISSN 2151-0075
issn_series 2151-0067
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Individual and Collective Graph Mining影响因子(影响力)




书目名称Individual and Collective Graph Mining影响因子(影响力)学科排名




书目名称Individual and Collective Graph Mining网络公开度




书目名称Individual and Collective Graph Mining网络公开度学科排名




书目名称Individual and Collective Graph Mining被引频次




书目名称Individual and Collective Graph Mining被引频次学科排名




书目名称Individual and Collective Graph Mining年度引用




书目名称Individual and Collective Graph Mining年度引用学科排名




书目名称Individual and Collective Graph Mining读者反馈




书目名称Individual and Collective Graph Mining读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:27:46 | 显示全部楼层
发表于 2025-3-22 03:48:11 | 显示全部楼层
发表于 2025-3-22 07:44:14 | 显示全部楼层
发表于 2025-3-22 10:04:04 | 显示全部楼层
发表于 2025-3-22 14:18:45 | 显示全部楼层
three different machine learning models to two different miRNA-mRNA datasets, of predictions from 3 different tools: TargetScan, miRanda, and RNAhybrid. Although an experimental validation of the results is needed to better confirm the predictions, deep learning techniques achieved the best performa
发表于 2025-3-22 19:28:14 | 显示全部楼层
发表于 2025-3-22 22:24:41 | 显示全部楼层
three different machine learning models to two different miRNA-mRNA datasets, of predictions from 3 different tools: TargetScan, miRanda, and RNAhybrid. Although an experimental validation of the results is needed to better confirm the predictions, deep learning techniques achieved the best performa
发表于 2025-3-23 03:27:34 | 显示全部楼层
Danai Koutra,Christos Faloutsosalso realizes a static software analysis component to collect detailed structural information and provides an interactive visualization and analysis of the functions. We use a large-scale community-based Earth System Model to demonstrate the workflow, functions and visualization of the toolkit. We a
发表于 2025-3-23 07:09:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 17:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表