找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Independent Component Analysis and Signal Separation; 8th International Co Tülay Adali,Christian Jutten,Allan Kardec Barros Conference proc

[复制链接]
查看: 13424|回复: 64
发表于 2025-3-21 18:14:51 | 显示全部楼层 |阅读模式
书目名称Independent Component Analysis and Signal Separation
副标题8th International Co
编辑Tülay Adali,Christian Jutten,Allan Kardec Barros
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Independent Component Analysis and Signal Separation; 8th International Co Tülay Adali,Christian Jutten,Allan Kardec Barros Conference proc
描述This book constitutes the refereed proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009, held in Paraty, Brazil, in March 2009. The 97 revised papers presented were carefully reviewed and selected from 137 submissions. The papers are organized in topical sections on theory, algorithms and architectures, biomedical applications, image processing, speech and audio processing, other applications, as well as a special session on evaluation.
出版日期Conference proceedings 2009
关键词Algorithms; Analysis; algorithm; audio segmentation; bioinformatics; blind source separation; brain-comput
版次1
doihttps://doi.org/10.1007/978-3-642-00599-2
isbn_softcover978-3-642-00598-5
isbn_ebook978-3-642-00599-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称Independent Component Analysis and Signal Separation影响因子(影响力)




书目名称Independent Component Analysis and Signal Separation影响因子(影响力)学科排名




书目名称Independent Component Analysis and Signal Separation网络公开度




书目名称Independent Component Analysis and Signal Separation网络公开度学科排名




书目名称Independent Component Analysis and Signal Separation被引频次




书目名称Independent Component Analysis and Signal Separation被引频次学科排名




书目名称Independent Component Analysis and Signal Separation年度引用




书目名称Independent Component Analysis and Signal Separation年度引用学科排名




书目名称Independent Component Analysis and Signal Separation读者反馈




书目名称Independent Component Analysis and Signal Separation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:13:44 | 显示全部楼层
Using Signal Invariants to Perform Nonlinear Blind Source Separationtisfy these constraints, and, if the constraints are satisfied, the sources can be explicitly constructed from the data. The method is illustrated by using it to separate two speech-like sounds recorded with a single microphone.
发表于 2025-3-22 01:56:23 | 显示全部楼层
Fast Parallel Estimation of High Dimensional Information Theoretical Quantities with Low Dimensionalsk; we combine RP dimension reduction with a simple ensemble method. We gain considerable speed-up with the potential of real-time parallel estimation of high dimensional information theoretical quantities.
发表于 2025-3-22 05:17:27 | 显示全部楼层
Blind Separation of Cyclostationary Signalsd to show which kind of cyclostationary source can be separated by the second-order cyclostationarity statistics. Numerical simulations are presented to demonstrate the effectiveness of the proposed approach.
发表于 2025-3-22 10:21:26 | 显示全部楼层
发表于 2025-3-22 13:32:44 | 显示全部楼层
发表于 2025-3-22 19:18:56 | 显示全部楼层
Comparison of Two Main Approaches to Joint SVDbecause we can make use of literature of joint diagonalization algorithms while the latter has advantages in numerical accuracy and flexibility to fit on-line applications. Numerical simulation for comparison using gradient-based algorithms verifies that the latter has advantage in numerical accuracy.
发表于 2025-3-22 21:20:45 | 显示全部楼层
Modeling the Short Time Fourier Transform Ratio and Application to Underdetermined Audio Source Sepabut is a random variable whose distribution we have obtained. Using this distribution and the Time-Frequency (TF) “disjoint” assumption of sources, we are able to obtain promising results in separating four audio sources from two microphones in a real reverberant room.
发表于 2025-3-23 02:05:38 | 显示全部楼层
发表于 2025-3-23 07:32:51 | 显示全部楼层
Complete Blind Subspace Deconvolutionicularly, we derive a separation technique for the complete BSSD problem: we solve the problem by reducing the estimation task to ISA via linear prediction. Numerical examples illustrate the efficiency of the proposed method.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 17:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表