找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Independent Component Analysis; Theory and Applicati Te-Won Lee Book 1998 Springer-Verlag US 1998 Independent Component Analysis.algorithms

[复制链接]
查看: 34093|回复: 41
发表于 2025-3-21 18:10:11 | 显示全部楼层 |阅读模式
书目名称Independent Component Analysis
副标题Theory and Applicati
编辑Te-Won Lee
视频video
图书封面Titlebook: Independent Component Analysis; Theory and Applicati Te-Won Lee Book 1998 Springer-Verlag US 1998 Independent Component Analysis.algorithms
描述.Independent Component Analysis. (ICA) is asignal-processing method to extract independent sources given onlyobserved data that are mixtures of the unknown sources. Recently,blind source separation by ICA has received considerable attentionbecause of its potential signal-processing applications such as speechenhancement systems, telecommunications, medical signal-processing andseveral data mining issues. .This book presents theories and applications of ICA and includesinvaluable examples of several real-world applications. Based ontheories in probabilistic models, information theory and artificialneural networks, several unsupervised learning algorithms arepresented that can perform ICA. The seemingly different theories suchas infomax, maximum likelihood estimation, negentropy maximization,nonlinear PCA, Bussgang algorithm and cumulant-based methods arereviewed and put in an information theoretic framework to unifyseveral lines of ICA research. An algorithm is presented that is ableto blindly separate mixed signals with sub- and super-Gaussian sourcedistributions. The learning algorithms can be extended to filtersystems, which allows the separation of voices recorded in a realenvir
出版日期Book 1998
关键词Independent Component Analysis; algorithms; blind source separation; classification; cognition; communica
版次1
doihttps://doi.org/10.1007/978-1-4757-2851-4
isbn_softcover978-1-4419-5056-7
isbn_ebook978-1-4757-2851-4
copyrightSpringer-Verlag US 1998
The information of publication is updating

书目名称Independent Component Analysis影响因子(影响力)




书目名称Independent Component Analysis影响因子(影响力)学科排名




书目名称Independent Component Analysis网络公开度




书目名称Independent Component Analysis网络公开度学科排名




书目名称Independent Component Analysis被引频次




书目名称Independent Component Analysis被引频次学科排名




书目名称Independent Component Analysis年度引用




书目名称Independent Component Analysis年度引用学科排名




书目名称Independent Component Analysis读者反馈




书目名称Independent Component Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:08:42 | 显示全部楼层
发表于 2025-3-22 02:09:44 | 显示全部楼层
Te-Won Leeic properties can be predicted when the properties, geometry, and volume concentrations of the constituent components are known. Many expressions are purely empirical or semi-theoretical. Others, however, are theoretically well founded such as the exact results from the following classical boundary
发表于 2025-3-22 07:07:52 | 显示全部楼层
发表于 2025-3-22 11:52:15 | 显示全部楼层
发表于 2025-3-22 16:52:20 | 显示全部楼层
发表于 2025-3-22 20:28:06 | 显示全部楼层
发表于 2025-3-23 00:14:04 | 显示全部楼层
发表于 2025-3-23 02:15:00 | 显示全部楼层
发表于 2025-3-23 08:57:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 07:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表