找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Independence, Additivity, Uncertainty; Karl Vind Book 2003 Springer-Verlag Berlin Heidelberg 2003 Keynes.Knight.Preferences.Uncertainty.Ut

[复制链接]
楼主: 底的根除
发表于 2025-3-23 10:40:56 | 显示全部楼层
Totally preordered setseordered sets and subsets of the real numbers. Some topological concepts are introduced in section 2.3 page 18. A total order gives rise to a topology and the main results from section 2.2 are in section 2.4 given in topological terms.
发表于 2025-3-23 17:55:48 | 显示全部楼层
发表于 2025-3-23 21:16:06 | 显示全部楼层
Mean groupoids operation o on .. Intuitively a o . can be thought of as the mean of or the midpoint between a and ., . o . = ., and if . ≻ ., then . ≻ . o . ≻ .. Later chapters will be concerned with totally preordered sets that have enough structure to define a mean operation on ((.,~),.).
发表于 2025-3-23 22:20:32 | 显示全部楼层
发表于 2025-3-24 04:03:19 | 显示全部楼层
Preferences and preference functionsChapter 2 treats totally ordered sets and gives representation theorems. Similar theorems for just relations — not assumed to be total — are trivial, but are convenient to have, because the main results in this book give conditions for particular additive representation.
发表于 2025-3-24 10:36:26 | 显示全部楼层
发表于 2025-3-24 11:56:37 | 显示全部楼层
发表于 2025-3-24 17:11:42 | 显示全部楼层
发表于 2025-3-24 20:23:16 | 显示全部楼层
A general integral representation by Birgit GrodalChapter 8 studied a totally preordered set . of functions . : . → ., where (.) is a measurable set and . an arbitrary set. . was under an independence condition shown to be a commutative mean groupoid..
发表于 2025-3-25 01:49:00 | 显示全部楼层
Special integral representations by Birgit GrodalIn chapter 11 we gave conditions on . which implied the existence of a measurable function.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-17 16:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表