找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: In the Tradition of Thurston III; Geometry and Dynamic Ken’ichi Ohshika,Athanase Papadopoulos Book 2024 The Editor(s) (if applicable) and T

[复制链接]
查看: 23033|回复: 47
发表于 2025-3-21 17:48:27 | 显示全部楼层 |阅读模式
书目名称In the Tradition of Thurston III
副标题Geometry and Dynamic
编辑Ken’ichi Ohshika,Athanase Papadopoulos
视频video
概述Contains comprehensive surveys on some of the most active research topic in mathematics.Features articles by well-known researchers in geometry, topology, dynamics and geometric group theory.Reveals t
图书封面Titlebook: In the Tradition of Thurston III; Geometry and Dynamic Ken’ichi Ohshika,Athanase Papadopoulos Book 2024 The Editor(s) (if applicable) and T
描述.William Thurston’s ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians.  The purpose of the present volume and of the other volumes in the same series is to provide a collection of articles that allows the reader to learn the important aspects of Thurston’s heritage. The topics covered in this volume include Kleinian groups, holomorphic motions, earthquakes from the Anti-de Sitter point of view, the Thurston  and Weil–Petersson metrics on Teichmüller space, 3-manifolds, geometric structures, dynamics on surfaces, homeomorphism groups of 2-manifolds and the theory of orbifolds..
出版日期Book 2024
关键词hyperbolic geometry; Möbius structures; hyperbolic ends; cone 3-manifolds; Thurston‘s norm; group actions
版次1
doihttps://doi.org/10.1007/978-3-031-43502-7
isbn_softcover978-3-031-43504-1
isbn_ebook978-3-031-43502-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称In the Tradition of Thurston III影响因子(影响力)




书目名称In the Tradition of Thurston III影响因子(影响力)学科排名




书目名称In the Tradition of Thurston III网络公开度




书目名称In the Tradition of Thurston III网络公开度学科排名




书目名称In the Tradition of Thurston III被引频次




书目名称In the Tradition of Thurston III被引频次学科排名




书目名称In the Tradition of Thurston III年度引用




书目名称In the Tradition of Thurston III年度引用学科排名




书目名称In the Tradition of Thurston III读者反馈




书目名称In the Tradition of Thurston III读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:30:16 | 显示全部楼层
发表于 2025-3-22 03:18:30 | 显示全部楼层
Geometric Structures in Topology, Geometry, Global Analysis and Dynamics,espect to the following problems: (1) The existence of maps of non-zero degree (domination relation or Gromov’s order); (2) The Gromov-Thurston monotonicity problem for numerical homotopy invariants with respect to the domination relation; (3) The existence of Anosov diffeomorphisms (Anosov-Smale conjecture).
发表于 2025-3-22 07:41:56 | 显示全部楼层
Orbifolds and the Modular Curve,of view on the subject (discrete groups acting properly and effectively on differentiable manifolds), the construction of the modular orbi-curve and its universal family of elliptic curves ends up requiring a bit more technology, in order to allow for non-effective actions.
发表于 2025-3-22 09:47:16 | 显示全部楼层
,Some Footnotes on Thurston’s Notes ,perbolic geometry, geometric structures, volumes of hyperbolic polyhedra and the so-called Koebe–Andreev–Thurston theorem. I discuss in particular some works of Lobachevsky, Andreev and Milnor, with an excursus in Dante’s cosmology, based on the insight of Pavel Florensky.
发表于 2025-3-22 13:45:12 | 显示全部楼层
https://doi.org/10.1007/978-3-031-43502-7hyperbolic geometry; Möbius structures; hyperbolic ends; cone 3-manifolds; Thurston‘s norm; group actions
发表于 2025-3-22 17:07:49 | 显示全部楼层
Ken’ichi Ohshika,Athanase PapadopoulosContains comprehensive surveys on some of the most active research topic in mathematics.Features articles by well-known researchers in geometry, topology, dynamics and geometric group theory.Reveals t
发表于 2025-3-22 23:58:01 | 显示全部楼层
http://image.papertrans.cn/i/image/463121.jpg
发表于 2025-3-23 01:39:52 | 显示全部楼层
978-3-031-43504-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-23 07:44:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 20:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表