找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Implementation and Application of Automata; 22nd International C Arnaud Carayol,Cyril Nicaud Conference proceedings 2017 Springer Internati

[复制链接]
楼主: minutia
发表于 2025-3-26 23:59:03 | 显示全部楼层
Henning Fernau,Lakshmanan Kuppusamy,Indhumathi Raman
发表于 2025-3-27 04:03:02 | 显示全部楼层
Nathanaël Fijalkow,Hugo Gimbert,Edon Kelmendi,Denis Kuperberg
发表于 2025-3-27 05:20:28 | 显示全部楼层
On the Complexity of Determinizing Monitors,l in size with respect to the original monitor. When monitors are described as CCS-like processes, this doubly-exponential bound is optimal. When (deterministic) monitors are described as finite automata (as their LTS), then they can be exponentially more succinct than their CCS process form.
发表于 2025-3-27 11:14:52 | 显示全部楼层
发表于 2025-3-27 13:54:23 | 显示全部楼层
发表于 2025-3-27 20:02:11 | 显示全部楼层
发表于 2025-3-28 01:29:36 | 显示全部楼层
Complexity of Proper Prefix-Convex Regular Languages,deal, prefix-closed, and prefix-free languages, which were studied elsewhere. Here we concentrate on prefix-convex languages that do not belong to any one of these classes; we call such languages .. We exhibit most complex proper prefix-convex languages, which meet the bounds for the size of the syn
发表于 2025-3-28 03:59:46 | 显示全部楼层
Equivalence of Probabilistic ,-Calculus and p-Automata, .-calculus .-calculus and p-automata (parity alternating Markov chain automata) have an equally strong connection. Namely, for every .-calculus formula we can construct a p-automaton that accepts exactly those Markov chains that satisfy the formula. For every p-automaton we can construct a .-calcul
发表于 2025-3-28 08:45:11 | 显示全部楼层
Complexity of Bifix-Free Regular Languages,lar languages. We show that there exist universal bifix-free languages that meet all the bounds for the state complexity of basic operations (Boolean operations, product, star, and reversal). This is in contrast with suffix-free languages, where it is known that there does not exist such languages.
发表于 2025-3-28 13:11:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 04:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表