找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Image and Graphics Technologies and Applications; 17th Chinese Confere Yongtian Wang,Huimin Ma,Ran He Conference proceedings 2022 The Edito

[复制链接]
楼主: counterfeit
发表于 2025-3-28 16:30:51 | 显示全部楼层
Person Re-identification Using Multi-branch Cooperative Networkns and unconstrained poses, we propose a multi-branch cooperative network for person Re-ID. First, attention branch and multi-scale branch are designed respectively. In the attention branch, we design shade module, random erasing module and stepped module, and guide each module to learn discriminati
发表于 2025-3-28 19:13:39 | 显示全部楼层
Cross-Domain Object Detection Through Image-Category Features Joint Alignmenten does not work as well as expected due to the domain shift problem. In this paper, a domain adaptive model based on image and category features is proposed to solve the cross-domain object detection task. The proposed model for domain adaption is based on the one-stage object detection model Retin
发表于 2025-3-29 01:26:18 | 显示全部楼层
发表于 2025-3-29 06:04:38 | 显示全部楼层
Communications in Computer and Information Sciencehttp://image.papertrans.cn/i/image/461494.jpg
发表于 2025-3-29 10:56:33 | 显示全部楼层
https://doi.org/10.1007/978-981-19-5096-4artificial intelligence; color image processing; color images; computer networks; computer systems; compu
发表于 2025-3-29 13:12:01 | 显示全部楼层
978-981-19-5095-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
发表于 2025-3-29 16:00:21 | 显示全部楼层
发表于 2025-3-29 19:53:26 | 显示全部楼层
发表于 2025-3-30 02:39:55 | 显示全部楼层
发表于 2025-3-30 06:26:51 | 显示全部楼层
Integration of Depth Normal Consistency and Depth Map Refinement for MVS Reconstructionsted and compared to traditional reconstruction approaches and MVS networks based on deep learning. The experimental results show that the proposed MVS reconstruction network was produced the better results in completeness and increased the quality of MVS reconstruction.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 17:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表