找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hyperparameter Tuning for Machine and Deep Learning with R; A Practical Guide Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann Book‘‘‘‘‘‘‘‘

[复制链接]
查看: 29366|回复: 49
发表于 2025-3-21 18:59:45 | 显示全部楼层 |阅读模式
书目名称Hyperparameter Tuning for Machine and Deep Learning with R
副标题A Practical Guide
编辑Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann
视频video
概述Provides hands-on examples that illustrate how hyperparameter tuning can be applied in industry and academia.Gives deep insights into the working mechanisms of machine learning and deep learning.This
图书封面Titlebook: Hyperparameter Tuning for Machine and Deep Learning with R; A Practical Guide Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann Book‘‘‘‘‘‘‘‘
描述.This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. ..The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods
出版日期Book‘‘‘‘‘‘‘‘ 2023
关键词Hyperparameter Tuning; Hyperparameters; Tuning; Deep Neural Networks; Reinforcement Learning; Machine Lea
版次1
doihttps://doi.org/10.1007/978-981-19-5170-1
isbn_softcover978-981-19-5172-5
isbn_ebook978-981-19-5170-1
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

书目名称Hyperparameter Tuning for Machine and Deep Learning with R影响因子(影响力)




书目名称Hyperparameter Tuning for Machine and Deep Learning with R影响因子(影响力)学科排名




书目名称Hyperparameter Tuning for Machine and Deep Learning with R网络公开度




书目名称Hyperparameter Tuning for Machine and Deep Learning with R网络公开度学科排名




书目名称Hyperparameter Tuning for Machine and Deep Learning with R被引频次




书目名称Hyperparameter Tuning for Machine and Deep Learning with R被引频次学科排名




书目名称Hyperparameter Tuning for Machine and Deep Learning with R年度引用




书目名称Hyperparameter Tuning for Machine and Deep Learning with R年度引用学科排名




书目名称Hyperparameter Tuning for Machine and Deep Learning with R读者反馈




书目名称Hyperparameter Tuning for Machine and Deep Learning with R读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:39:46 | 显示全部楼层
发表于 2025-3-22 04:10:47 | 显示全部楼层
Thomas Bartz-Beielstein,Olaf Mersmann,Sowmya Chandrasekaran
发表于 2025-3-22 05:14:12 | 显示全部楼层
Thomas Bartz-Beielstein,Sowmya Chandrasekaran,Frederik Rehbach,Martin Zaefferer
发表于 2025-3-22 09:07:06 | 显示全部楼层
Thomas Bartz-Beielstein,Sowmya Chandrasekaran,Frederik Rehbach
发表于 2025-3-22 16:17:52 | 显示全部楼层
发表于 2025-3-22 20:42:49 | 显示全部楼层
发表于 2025-3-22 22:21:22 | 显示全部楼层
ue distribution of CA and tyrosinase was analyzed by in situ hybridization and RT-PCR. The effects of AcPase I on CaCO. crystal formation were studied in vitro. Taken together, these results revealed the important functions and features of enzymes in ., which would have important roles to further un
发表于 2025-3-23 02:05:43 | 显示全部楼层
发表于 2025-3-23 07:20:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表