找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hyperelasticity Primer; Robert M. Hackett Textbook 20161st edition Springer International Publishing Switzerland 2016 1st, 2nd, 3rd, and 4

[复制链接]
查看: 29562|回复: 63
发表于 2025-3-21 16:23:55 | 显示全部楼层 |阅读模式
书目名称Hyperelasticity Primer
编辑Robert M. Hackett
视频video
概述Introduces hyperelasticity in a concise, straightforward manner using practical examples.Reinforces understanding with a significant number of example problems-solutions to demonstrate application of
图书封面Titlebook: Hyperelasticity Primer;  Robert M. Hackett Textbook 20161st edition Springer International Publishing Switzerland 2016 1st, 2nd, 3rd, and 4
描述This book introduces the subject of hyperelasticity in a concise manner mainly directed to students of solid mechanics who have a familiarity with continuum mechanics. It focuses on important introductory topics in the field of nonlinear material behavior and presents a number of example problems and solutions to greatly aid the student in mastering the difficulty of the subject and gaining necessary insight. Professor Hackett delineates the concepts and applications of hyperelasticity in such a way that a new student of the subject can absorb the intricate details without having to wade through excessively complicated formulations. The book further presents significant review material on intricately related subjects such as tensor calculus and introduces some new formulations.
出版日期Textbook 20161st edition
关键词1st, 2nd, 3rd, and 4th Elasticity Tensors; Deformation Gradient; Finite Elasticity; Finite Viscoelastic
版次1
doihttps://doi.org/10.1007/978-3-319-23273-7
isbn_softcover978-3-319-36928-0
isbn_ebook978-3-319-23273-7
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Hyperelasticity Primer影响因子(影响力)




书目名称Hyperelasticity Primer影响因子(影响力)学科排名




书目名称Hyperelasticity Primer网络公开度




书目名称Hyperelasticity Primer网络公开度学科排名




书目名称Hyperelasticity Primer被引频次




书目名称Hyperelasticity Primer被引频次学科排名




书目名称Hyperelasticity Primer年度引用




书目名称Hyperelasticity Primer年度引用学科排名




书目名称Hyperelasticity Primer读者反馈




书目名称Hyperelasticity Primer读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:56:05 | 显示全部楼层
发表于 2025-3-22 03:16:28 | 显示全部楼层
发表于 2025-3-22 06:26:36 | 显示全部楼层
发表于 2025-3-22 11:06:46 | 显示全部楼层
Finite Elasticity,troduction of a strain-energy (or stored-energy) function into elasticity is due to George Green (1793–1841) and elastic solids for which such a function is assumed to exist are said to be Green elastic or hyperelastic. Elasticity without an underlying strain-energy function is called Cauchy elastic
发表于 2025-3-22 13:09:05 | 显示全部楼层
发表于 2025-3-22 19:45:17 | 显示全部楼层
Polar Decomposition,olar decomposition theorem states that any deformation gradient tensor can be multiplicatively decomposed into the product of an orthogonal tensor, known as the rotation tensor, and a symmetric tensor called the right stretch tensor, or into the product of a symmetric tensor called the left stretch
发表于 2025-3-22 21:33:24 | 显示全部楼层
Strain-Energy Functions,unction of the three invariants of each of the two Cauchy-Green deformation tensors, given in terms of the principal extension ratios, or stretches. A number of different strain-energy formulations exist, having properties and characteristics that make them appropriate for characterizing different h
发表于 2025-3-23 04:18:44 | 显示全部楼层
Stress Measures,ensor, a Lagrangian formulation, is the most significant of the stress measures. The formulation and steps for computing it are presented in terms of the Mooney-Rivlin strain-energy function model. The Cauchy stress tensor, an Eulerian formulation, is obtained directly from the second Piola-Kirchhof
发表于 2025-3-23 08:32:53 | 显示全部楼层
Tangent Moduli, is linear, the stiffness does not change as deformation changes. However, for a hyperelastic model, differentiating the strain-energy function with respect to either the finite strain tensor or one of the two Cauchy-Green deformation tensors yields elastic “constants,” the magnitude of which depend
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 00:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表