找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hyperbolic Geometry; James W. Anderson Textbook 19991st edition Springer-Verlag London 1999 Hyperbolic geometry.Hyperbolic plane.Hyperboli

[复制链接]
查看: 42249|回复: 37
发表于 2025-3-21 18:32:52 | 显示全部楼层 |阅读模式
书目名称Hyperbolic Geometry
编辑James W. Anderson
视频video
概述THIS IS THE FIRST GENUINELY INTRODUCTORY TEXTBOOK DEVOTED TO THE TOPIC: IT IS SELF-CONTAINED AND ASSUMES VERY FEW PREREQUISITES..INCLUDES FULL SOLUTIONS FOR ALL EXERCISES - THE ONLY BOOK ON THE SUBJEC
丛书名称Springer Undergraduate Mathematics Series
图书封面Titlebook: Hyperbolic Geometry;  James W. Anderson Textbook 19991st edition Springer-Verlag London 1999 Hyperbolic geometry.Hyperbolic plane.Hyperboli
描述.The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, providing the reader with a firm grasp of the concepts and techniques of this beautiful area of mathematics. Topics covered include the upper half-space model of the hyperbolic plane, Möbius transformations, the general Möbius group and the subgroup preserving path length in the upper half-space model, arc-length and distance, the Poincaré disc model, convex subsets of the hyperbolic plane, and the Gauss-Bonnet formula for the area of a hyperbolic polygon and its applications. ..This updated second edition also features:..- an expanded discussion of planar models of the hyperbolic plane arising from complex analysis;..- the hyperboloid model of the hyperbolic plane;..- a brief discussion of generalizations to higher dimensions;..- many new exercises..
出版日期Textbook 19991st edition
关键词Hyperbolic geometry; Hyperbolic plane; Hyperbolicity; geometry; mathematics
版次1
doihttps://doi.org/10.1007/978-1-4471-3987-4
isbn_ebook978-1-4471-3987-4Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London 1999
The information of publication is updating

书目名称Hyperbolic Geometry影响因子(影响力)




书目名称Hyperbolic Geometry影响因子(影响力)学科排名




书目名称Hyperbolic Geometry网络公开度




书目名称Hyperbolic Geometry网络公开度学科排名




书目名称Hyperbolic Geometry被引频次




书目名称Hyperbolic Geometry被引频次学科排名




书目名称Hyperbolic Geometry年度引用




书目名称Hyperbolic Geometry年度引用学科排名




书目名称Hyperbolic Geometry读者反馈




书目名称Hyperbolic Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:42:52 | 显示全部楼层
James W. AndersonTHIS IS THE FIRST GENUINELY INTRODUCTORY TEXTBOOK DEVOTED TO THE TOPIC: IT IS SELF-CONTAINED AND ASSUMES VERY FEW PREREQUISITES..INCLUDES FULL SOLUTIONS FOR ALL EXERCISES - THE ONLY BOOK ON THE SUBJEC
发表于 2025-3-22 02:59:51 | 显示全部楼层
发表于 2025-3-22 05:15:20 | 显示全部楼层
发表于 2025-3-22 09:26:39 | 显示全部楼层
发表于 2025-3-22 15:14:30 | 显示全部楼层
The Basic Spaces,his book takes place. We define . and talk a bit about .. In order to aid our construction of a reasonable group of transformations of ℍ, we expand our horizons to consider the .., and close the chapter by considering how ℍ sits as a subset of ..
发表于 2025-3-22 20:41:54 | 显示全部楼层
,The General Möbius Group,ions, we spend this chapter by describing such a reasonable group of transformations of ℂ̅, namely the . Möb, which consists of compositions of . and . We close the chapter by restricting our attention to the transformations in Möb preserving ℍ.
发表于 2025-3-22 23:23:06 | 显示全部楼层
发表于 2025-3-23 02:44:22 | 显示全部楼层
发表于 2025-3-23 05:53:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 20:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表