找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hyperbolic Cross Approximation; Dinh Dũng,Vladimir Temlyakov,Tino Ullrich,Sergey T Textbook 2018 Springer Nature Switzerland AG 2018 hyper

[复制链接]
查看: 17640|回复: 45
发表于 2025-3-21 17:28:17 | 显示全部楼层 |阅读模式
书目名称Hyperbolic Cross Approximation
编辑Dinh Dũng,Vladimir Temlyakov,Tino Ullrich,Sergey T
视频video
概述Covers both classical results from the 1960s and very recent results on high-dimensional approximation.Contains a number of short illustrative proofs.Provides the first comprehensive survey on hyperbo
丛书名称Advanced Courses in Mathematics - CRM Barcelona
图书封面Titlebook: Hyperbolic Cross Approximation;  Dinh Dũng,Vladimir Temlyakov,Tino Ullrich,Sergey T Textbook 2018 Springer Nature Switzerland AG 2018 hyper
描述.This book provides a systematic survey of classical and recent results on hyperbolic cross approximation.. Motivated by numerous applications, the last two decades have seen great success in studying multivariate approximation. Multivariate problems have proven to be considerably more difficult than their univariate counterparts, and recent findings have established that multivariate mixed smoothness classes play a fundamental role in high-dimensional approximation. The book presents essential findings on and discussions of linear and nonlinear approximations of the mixed smoothness classes. Many of the important open problems explored here will provide both students and professionals with inspirations for further research..
出版日期Textbook 2018
关键词hyperbolic cross; sparse grid; mixed smoothness; trigonometric polynomial; linear approximation; Kolmogor
版次1
doihttps://doi.org/10.1007/978-3-319-92240-9
isbn_softcover978-3-319-92239-3
isbn_ebook978-3-319-92240-9Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Hyperbolic Cross Approximation影响因子(影响力)




书目名称Hyperbolic Cross Approximation影响因子(影响力)学科排名




书目名称Hyperbolic Cross Approximation网络公开度




书目名称Hyperbolic Cross Approximation网络公开度学科排名




书目名称Hyperbolic Cross Approximation被引频次




书目名称Hyperbolic Cross Approximation被引频次学科排名




书目名称Hyperbolic Cross Approximation年度引用




书目名称Hyperbolic Cross Approximation年度引用学科排名




书目名称Hyperbolic Cross Approximation读者反馈




书目名称Hyperbolic Cross Approximation读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:50:33 | 显示全部楼层
Function Spaces on ,We begin with the univariate case in order to illustrate the action of the differential operator on periodic functions. For a trigonometric polynomial . we have
发表于 2025-3-22 03:08:59 | 显示全部楼层
Linear Approximation,By linear approximation we understand approximation from a fixed finite-dimensional subspace. In the study of approximation of the univariate periodic functions the idea of representing a function by its Fourier series is very natural and traditional.
发表于 2025-3-22 08:28:48 | 显示全部楼层
发表于 2025-3-22 10:38:19 | 显示全部楼层
Entropy Numbers,The concept of entropy is also known as Kolmogorov entropy and metric entropy. This concept allows us to measure how big is a compact set.
发表于 2025-3-22 15:44:36 | 显示全部楼层
发表于 2025-3-22 19:24:33 | 显示全部楼层
Numerical Integration,A cubature rule Λm(f, ξ) approximates the integral I(f) =f. f(x) dx by computing a weighted sum of finitely many function values at X. = {x., . . . , x.},
发表于 2025-3-22 23:18:44 | 显示全部楼层
Related Problems,In this section we briefly discuss the development of the hyperbolic cross approximation theory with emphasis put on the development of methods and connections to other areas of research.
发表于 2025-3-23 05:04:01 | 显示全部楼层
发表于 2025-3-23 08:20:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 18:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表