找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: How Fuzzy Concepts Contribute to Machine Learning; Mahdi Eftekhari,Adel Mehrpooya,Vicenç Torra Book 2022 The Editor(s) (if applicable) and

[复制链接]
查看: 18699|回复: 46
发表于 2025-3-21 17:52:15 | 显示全部楼层 |阅读模式
书目名称How Fuzzy Concepts Contribute to Machine Learning
编辑Mahdi Eftekhari,Adel Mehrpooya,Vicenç Torra
视频video
概述Recent research on the application of fuzzy and hesitant fuzzy sets in machine learning tasks.Shows how fuzzy concepts can be used to solve multi-criteria decision making challenges raised in machine
丛书名称Studies in Fuzziness and Soft Computing
图书封面Titlebook: How Fuzzy Concepts Contribute to Machine Learning;  Mahdi Eftekhari,Adel Mehrpooya,Vicenç Torra Book 2022 The Editor(s) (if applicable) and
描述This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the  communities of pure mathematicians of fuzzy sets and data scientists. .
出版日期Book 2022
关键词Fuzzy Concepts; Machine Learning; Fuzzy Sets; Hesitant Fuzzy Sets; Data Uncertainty Modeling
版次1
doihttps://doi.org/10.1007/978-3-030-94066-9
isbn_softcover978-3-030-94068-3
isbn_ebook978-3-030-94066-9Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称How Fuzzy Concepts Contribute to Machine Learning影响因子(影响力)




书目名称How Fuzzy Concepts Contribute to Machine Learning影响因子(影响力)学科排名




书目名称How Fuzzy Concepts Contribute to Machine Learning网络公开度




书目名称How Fuzzy Concepts Contribute to Machine Learning网络公开度学科排名




书目名称How Fuzzy Concepts Contribute to Machine Learning被引频次




书目名称How Fuzzy Concepts Contribute to Machine Learning被引频次学科排名




书目名称How Fuzzy Concepts Contribute to Machine Learning年度引用




书目名称How Fuzzy Concepts Contribute to Machine Learning年度引用学科排名




书目名称How Fuzzy Concepts Contribute to Machine Learning读者反馈




书目名称How Fuzzy Concepts Contribute to Machine Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:52:29 | 显示全部楼层
发表于 2025-3-22 00:33:16 | 显示全部楼层
Unsupervised Feature Selection Method Based on Sensitivity and Correlation Concepts for Multiclass Pive clustering and the concepts of sensitivity and Pearson’s correlation. We show how this method is employed as the fitness function in a genetic algorithm (GA) in order to evaluate feature subsets. Informally, the method works as follows. First, the sensitivity index of each feature is computed by
发表于 2025-3-22 07:39:10 | 显示全部楼层
发表于 2025-3-22 12:13:35 | 显示全部楼层
发表于 2025-3-22 13:55:40 | 显示全部楼层
Hesitant Fuzzy Decision Tree Approach for Highly Imbalanced Data Classificationd data when the distribution of data samples is not the same in different classes. That is, there is usually a large difference among the number of instances in different classes. If this is the case, learning algorithms, with their goal of maximizing the accuracy of the inferred model, may ignore t
发表于 2025-3-22 18:42:44 | 显示全部楼层
发表于 2025-3-23 00:40:20 | 显示全部楼层
Ensemble of Feature Selection Methods: A Hesitant Fuzzy Set Based Approach significantly smaller than the number of instances, this is not the case for DNA microarray data. This chapter introduces a feature selection algorithm based on a greedy search, and it uses main concepts from hesitant fuzzy set theory as an heuristic to tackle the feature selection problem for high
发表于 2025-3-23 04:44:34 | 显示全部楼层
发表于 2025-3-23 07:57:42 | 显示全部楼层
A Hybrid Filter-Based Feature Selection Method via Hesitant Fuzzy and Rough Sets Conceptsthe significant features. In particular, the approach described in this chapter is based on the combination of concepts related to rough set theory to build a feature selection algorithm. The concepts considered include weighted rough sets, fuzzy rough sets, and hesitant fuzzy sets.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 16:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表