找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Homotopy Analysis Method in Nonlinear Differential Equations; Shijun Liao Book 2012 Higher Education Press,Beijng and Springer-Verlag GmbH

[复制链接]
楼主: CULT
发表于 2025-3-28 14:59:41 | 显示全部楼层
发表于 2025-3-28 19:12:59 | 显示全部楼层
发表于 2025-3-28 23:55:39 | 显示全部楼层
发表于 2025-3-29 04:38:36 | 显示全部楼层
Basic Ideas of the Homotopy Analysis Method the concept of the homotopy, the flexibility of constructing equations for continuous variations, the way to guarantee convergence of solution series, the essence of the convergence-control parameter .., the methods to accelerate convergence, and so on. The corresponding Mathematica codes are given
发表于 2025-3-29 07:15:58 | 显示全部楼层
Optimal Homotopy Analysis Method, which logically contains the basic optimal HAM with only one convergence-control parameter and also the optimal HAM with an infinite number of parameters. It is found that approximations given by the optimal HAMs converge fast in general. Especially, the basic optimal HAM mostly gives good enough
发表于 2025-3-29 12:12:56 | 显示全部楼层
Systematic Descriptions and Related Theoremshomotopy-derivative operator and deformation equations are proved, which are helpful to gain high-order approximations. Some theorems of convergence are proved, and the methods to control and accelerate convergence are generally described. A few of open questions are discussed.
发表于 2025-3-29 18:51:36 | 显示全部楼层
发表于 2025-3-29 21:50:31 | 显示全部楼层
发表于 2025-3-30 00:08:43 | 显示全部楼层
发表于 2025-3-30 04:43:36 | 显示全部楼层
Nonlinear Boundary-value Problems with Multiple Solutionsthematica package BVPh (version 1.0) for .th-order nonlinear boundary-value equations . in a finite interval 0≤.≤., subject to the . linear boundary conditions ., (1≤.≤.), where . is a .th-order nonlinear differential operator, . is a linear operator, γ. is a constant, respectively. Especially, the
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 22:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表