用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Homology; Saunders Mac Lane Book 1995 Springer-Verlag Berlin Heidelberg 1995 Abelian group.Factor.algebra.auditor.cohomology.collaboration

[复制链接]
楼主: crusade
发表于 2025-3-25 04:51:09 | 显示全部楼层
Classics in Mathematicshttp://image.papertrans.cn/h/image/428145.jpg
发表于 2025-3-25 10:10:35 | 显示全部楼层
发表于 2025-3-25 14:21:33 | 显示全部楼层
Modules, Diagrams, and Functors,Homology theory deals repeatedly with the formal properties of functions and their composites. The functions concerned are usually homomorphisms of modules or of related algebraic systems. The formal properties are subsumed in the statement that the homomorphisms constitute a category. This chapter will examine the notions of module and category.
发表于 2025-3-25 17:25:28 | 显示全部楼层
Cohomology of Groups,The cohomology of a group . provides our first example of the functors Ext.(.) — with . the group ring and . = .. These cohomology groups may be defined directly in terms of a standard “bar resolution”. In low dimensions they arise in problems of group extensions by . in all dimensions they have a topological interpretation (§11).
发表于 2025-3-25 23:04:06 | 显示全部楼层
Tensor and Torsion Products,Let . be a right .-module and . a left .-module — a situation we may indicate as ., .. Their . .⊗. is the abelian group generated by the symbols .⊗. for .∈. and .∈. subject to the relations
发表于 2025-3-26 03:29:30 | 显示全部楼层
发表于 2025-3-26 04:57:59 | 显示全部楼层
发表于 2025-3-26 08:46:33 | 显示全部楼层
Cohomology of Algebraic Systems,The homology of algebraic systems is an instance of relative homological algebra.
发表于 2025-3-26 15:27:35 | 显示全部楼层
Extensions and Resolutions,sions, suitably classified by a congruence relation, are the elements of a group Ext.(.). To calculate this group, we present . as the quotient .=./. of a free module .; this process can be iterated as .=./., .=./.,… to give an exact sequence⋯→.→.→⋯→.→.→.→0called a “free resolution” of .. The complex Horn (., .) has cohomology Ext.(.).
发表于 2025-3-26 18:06:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 14:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表