书目名称 | Homologie des algebres commutatives | 编辑 | Michel Andrè | 视频video | | 丛书名称 | Grundlehren der mathematischen Wissenschaften | 图书封面 |  | 描述 | (egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d‘homo logie de l‘algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l‘algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l‘homologie et la cohomologie d‘une algebre libre sont triviales (corollaire 3. 36). Quant au module Ho(A,B,B) il est toujours isomorphe au module des differentielles de Kaehler QBIA (proposition 6. 3). Lorsque l‘anneau Best un quotient de l‘anneau A, la situation est simple en degre 1 (proposition 6. 1) H (A, B, W) ~ Tor}(B, W) I et en degre 2 (theoreme 15. 8, propositions 15. 9 et 15. 12) H (A,B, W) ~ Tor1(B, W)jTor}(B,B). Tor}(B, W). 2 En ajoutant des variables independantes a l‘anneau A, il est d‘ailleurs possible de se ramener a ce cas particulier (corollaire 5. 2). Dans cette theorie, les modules d‘homologie relative sont en fait des modules d‘homologie absolue. De maniere precise: a une A-algebre B et a une B-algebre C correspond une suite exacte, dite de Jacobi Zariski (theoreme 5. 1) . . . --+ Hn(A,B, W) --+ Hn(A, C, W) --+ Hn(B, C, W) -+ H _ I (A, B, W) --+ •••• n De cette suite decoulent des relations entre differenti | 出版日期 | Book 1974 | 关键词 | Homologie; Kommutative Algebra; algebra; commutative algebra; homomorphism; homotopy | 版次 | 1 | doi | https://doi.org/10.1007/978-3-642-51449-4 | isbn_softcover | 978-3-642-51450-0 | isbn_ebook | 978-3-642-51449-4Series ISSN 0072-7830 Series E-ISSN 2196-9701 | issn_series | 0072-7830 | copyright | Springer-Verlag Berlin Heidelberg 1974 |
The information of publication is updating
|
|