找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Homogeneous Finsler Spaces; Shaoqiang Deng Book 2012 Springer Science+Business Media New York 2012 Finsler geometry.Killing vector fields.

[复制链接]
查看: 37028|回复: 40
发表于 2025-3-21 18:48:08 | 显示全部楼层 |阅读模式
书目名称Homogeneous Finsler Spaces
编辑Shaoqiang Deng
视频video
概述Presents the most recent results on the applications of Lie theory to Finsler geometry.Provides an accessible introduction to Finsler geometry that allows the reader to quickly understand topics and t
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: Homogeneous Finsler Spaces;  Shaoqiang Deng Book 2012 Springer Science+Business Media New York 2012 Finsler geometry.Killing vector fields.
描述Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces,  leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of  the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvatu
出版日期Book 2012
关键词Finsler geometry; Killing vector fields; Lie theory; Myers-Steenrod Theorem; Randers spaces; isometry gro
版次1
doihttps://doi.org/10.1007/978-1-4614-4244-8
isbn_softcover978-1-4899-9476-9
isbn_ebook978-1-4614-4244-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Science+Business Media New York 2012
The information of publication is updating

书目名称Homogeneous Finsler Spaces影响因子(影响力)




书目名称Homogeneous Finsler Spaces影响因子(影响力)学科排名




书目名称Homogeneous Finsler Spaces网络公开度




书目名称Homogeneous Finsler Spaces网络公开度学科排名




书目名称Homogeneous Finsler Spaces被引频次




书目名称Homogeneous Finsler Spaces被引频次学科排名




书目名称Homogeneous Finsler Spaces年度引用




书目名称Homogeneous Finsler Spaces年度引用学科排名




书目名称Homogeneous Finsler Spaces读者反馈




书目名称Homogeneous Finsler Spaces读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:48:04 | 显示全部楼层
Homogeneous Finsler Spaces978-1-4614-4244-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
发表于 2025-3-22 03:20:29 | 显示全部楼层
发表于 2025-3-22 06:35:23 | 显示全部楼层
Shaoqiang DengPresents the most recent results on the applications of Lie theory to Finsler geometry.Provides an accessible introduction to Finsler geometry that allows the reader to quickly understand topics and t
发表于 2025-3-22 10:00:00 | 显示全部楼层
发表于 2025-3-22 14:15:15 | 显示全部楼层
发表于 2025-3-22 20:21:41 | 显示全部楼层
Homogeneous Finsler Spaces,s not diffeomorphic to a rank-one Riemannian symmetric space, then its degree of symmetry can be realized by a non-Riemannian Finsler metric. Finally, in Sect. 4.5, we study fourth-root homogeneous Finsler metrics. As an explicit example, we give a classification of all invariant fourth-root Finsler metrics on Grassmannian manifolds.
发表于 2025-3-23 00:37:43 | 显示全部楼层
Introduction to Finsler Geometry,e notions of Berwald spaces and Landsberg spaces. In Sect. ., we recall Shen’s definition of S-curvature of Finsler spaces. Finally, in Sect.., we collect some results on Finsler spaces of constant flag curvature as well as Einstein–Finsler spaces, and present the Akbar–Zadeh theorem.
发表于 2025-3-23 03:10:10 | 显示全部楼层
Lie Groups and Homogeneous Spaces,differential geometry. Section . is devoted to introducing the structure and classification of complex semisimple Lie algebras. In Sect. ., we collect some important results on homogeneous Riemannian manifolds. Finally, in Sect. ., we present the theory of Riemannian symmetric spaces.
发表于 2025-3-23 09:11:03 | 显示全部楼层
Symmetric Finsler Spaces,ct. 5.4, we prove some interesting rigidity results on symmetric Finsler spaces. Finally, in Sect. 5.1, we study complex structures on symmetric Finsler spaces and obtain a complete classification of the complex symmetric Finsler spaces.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 09:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表