找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hip Fractures; A Practical Guide to Kenneth J. Koval,Joseph D. Zuckerman Book 2000 Springer Science+Business Media New York 2000 anatomy.co

[复制链接]
查看: 18844|回复: 52
发表于 2025-3-21 17:35:59 | 显示全部楼层 |阅读模式
书目名称Hip Fractures
副标题A Practical Guide to
编辑Kenneth J. Koval,Joseph D. Zuckerman
视频video
图书封面Titlebook: Hip Fractures; A Practical Guide to Kenneth J. Koval,Joseph D. Zuckerman Book 2000 Springer Science+Business Media New York 2000 anatomy.co
描述As the population of elderly people has increased, so too has the incidence of hip fracture. While injuries to the hips are common, they can be quite complicated and require both surgical and non-surgical approaches to treatment and management. J. Zuckerman, MD, Chairman, Dep. of Orthopaedic Surgery and K. Koval, MD, Chief, Fracture service, both of the prestigious Hospital for Joint Diseases in New York, in this new volume address the issues, complications, and treatments that face both hip specialists and general orthopedic surgeon. Over 500 line drawings and photographs analyze and explain the various types of hip fractures including fractures of the femoral neck, intertrochanteric fractures and subtrochanteric fractures. In addition, this book covers epidemiology and mechanisms of injury, diagnosis, treatment principles, avoidance of pitfalls, rehabilitation, outcome assessment, economics of hip fracture treatment and prevention.
出版日期Book 2000
关键词anatomy; complication; fracture; hip; orthopaedic surgery; rehabilitation; surgery
版次1
doihttps://doi.org/10.1007/978-1-4757-4052-3
isbn_softcover978-1-4757-4054-7
isbn_ebook978-1-4757-4052-3
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

书目名称Hip Fractures影响因子(影响力)




书目名称Hip Fractures影响因子(影响力)学科排名




书目名称Hip Fractures网络公开度




书目名称Hip Fractures网络公开度学科排名




书目名称Hip Fractures被引频次




书目名称Hip Fractures被引频次学科排名




书目名称Hip Fractures年度引用




书目名称Hip Fractures年度引用学科排名




书目名称Hip Fractures读者反馈




书目名称Hip Fractures读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:54:35 | 显示全部楼层
n models across different application domains. Extensive experiments were carried using different established methods: EAST, CRAFT, Tessaract and Ensembles applied to various publicly available datasets. The generalisation performance of the models was evaluated and compared using precision, recall
发表于 2025-3-22 02:32:21 | 显示全部楼层
Kenneth J. Koval,Joseph D. Zuckermanificantly sparser modifications than other approaches, we achieve comparable or better performance on all metrics. Moreover, we demonstrate that our approach predominantly modifies salient time steps and features, leaving non-salient inputs untouched.
发表于 2025-3-22 06:46:54 | 显示全部楼层
发表于 2025-3-22 08:58:10 | 显示全部楼层
Kenneth J. Koval,Joseph D. Zuckermantatistical features, and the SR-Module is composed of our proposed DUSCMAnet, a lightweight SR network. After classifying, a majority of sub-images will pass through lighter networks, thus the computational cost can be significantly reduced. Experiments show that our DUSCMAnet is superior to the exi
发表于 2025-3-22 13:49:35 | 显示全部楼层
发表于 2025-3-22 18:17:09 | 显示全部楼层
Kenneth J. Koval,Joseph D. Zuckermanontent, . employs deep neural networks to learn their representations automatically. Moreover, we propose a strategy to generate portfolios by utilizing prediction results obtained by .. Extensive data analysis and experiments show that . can bring us high-yield portfolios.
发表于 2025-3-22 22:41:44 | 显示全部楼层
发表于 2025-3-23 02:59:51 | 显示全部楼层
发表于 2025-3-23 07:54:37 | 显示全部楼层
Kenneth J. Koval,Joseph D. Zuckermanin-specific and domain-invariant features is enlarged, which promotes RPN feature to contain more domain-invariant information. Furthermore, we propose dynamic weighted adversarial training to alleviate the unstable training caused by adversarial learning. We conduct extensive experiments on multipl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 13:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表