找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials; Allan M. Krall Book 2002 Springer Basel AG 2002 Boundary value problem.

[复制链接]
楼主: 我在争斗志
发表于 2025-3-28 15:54:05 | 显示全部楼层
发表于 2025-3-28 20:56:49 | 显示全部楼层
Examples of Sobolev Differential OperatorsFrom each section of the previous chapter we list at least one example. For the singular problems there are several.
发表于 2025-3-29 01:05:24 | 显示全部楼层
Regular Linear Hamiltonian Systems L. Wilder and L. Schlesinger. G. A. Bliss [3] in 1926 seems to have been the first to discuss regular, self-adjoint differential systems. Additional references to their works may be found in the papers of Birkhoff and Langer [2], and in the book [4] by Coddington and Levinson.
发表于 2025-3-29 04:59:19 | 显示全部楼层
发表于 2025-3-29 08:49:58 | 显示全部楼层
The Spectral Resolution for Linear Hamiltonian Systems with One Singular Pointperators in a Hilbert space, looks like when applied to the self-adjoint linear Hamiltonian systems of Hinton and Shaw. Remarkably we can find detailed formulas for the spectral measure and the Hilbert space it generates, far more than is possible for the setting employed by Niessen.
发表于 2025-3-29 14:27:22 | 显示全部楼层
发表于 2025-3-29 15:40:32 | 显示全部楼层
发表于 2025-3-29 21:35:24 | 显示全部楼层
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/h/image/427075.jpg
发表于 2025-3-30 00:42:27 | 显示全部楼层
0255-0156 systemsand their scalar counterparts and their application to orthogonal polynomials. In a sense, this is an updating of E. C. Titchmarsh‘s classic Eigenfunction Expansions. My interest in these areas began in 1960-61, when, as a graduate student, I was introduced by my advisors E. J. McShane and M
发表于 2025-3-30 06:05:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 10:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表