找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Higher Order Logic Theorem Proving and Its Applications; 7th International Wo Thomas F. Melham,Juanito Camilleri Conference proceedings 199

[复制链接]
楼主: 遮蔽
发表于 2025-3-23 11:10:49 | 显示全部楼层
发表于 2025-3-23 16:53:19 | 显示全部楼层
发表于 2025-3-23 19:25:43 | 显示全部楼层
发表于 2025-3-24 00:08:58 | 显示全部楼层
Brian T. Grahamthe `best‘ aggregation rule. In 1951 young Americanscientist and future Nobel Prize winner Kenneth Arrow formulated theproblem in an axiomatic way, i.e., he specified a set of axioms whichevery reasonable aggregation rule has to satisfy, and obtained thatthese axioms are inconsistent. This result, o
发表于 2025-3-24 05:53:26 | 显示全部楼层
Keith Hannathe `best‘ aggregation rule. In 1951 young Americanscientist and future Nobel Prize winner Kenneth Arrow formulated theproblem in an axiomatic way, i.e., he specified a set of axioms whichevery reasonable aggregation rule has to satisfy, and obtained thatthese axioms are inconsistent. This result, o
发表于 2025-3-24 09:28:45 | 显示全部楼层
John Harrisonr a competitive economy.. The case where no equilibrium exists even though indifference curves, production functions, and so on, are fairly well behaved is a useful one to show the necessity of proving the existence of equilibrium. Mill (1869) indicates that one of the first examples of the non-exis
发表于 2025-3-24 13:51:53 | 显示全部楼层
发表于 2025-3-24 18:17:05 | 显示全部楼层
发表于 2025-3-24 22:20:15 | 显示全部楼层
LCF examples in HOL,ch as lazy lists. Because of continual presence of bottom elements, it is clumsy for reasoning about finite-valued types and strict functions. The HOL system provides set theory and supports reasoning about finite-valued types and total functions well. In this paper a number of examples are used to
发表于 2025-3-25 01:08:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 01:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表