找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: High-dimensional Knot Theory; Algebraic Surgery in Andrew Ranicki Book 1998 Springer-Verlag Berlin Heidelberg 1998 K-theory.homology.knots.

[复制链接]
查看: 49198|回复: 65
发表于 2025-3-21 16:16:21 | 显示全部楼层 |阅读模式
书目名称High-dimensional Knot Theory
副标题Algebraic Surgery in
编辑Andrew Ranicki
视频video
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: High-dimensional Knot Theory; Algebraic Surgery in Andrew Ranicki Book 1998 Springer-Verlag Berlin Heidelberg 1998 K-theory.homology.knots.
描述High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. The main theme is the application of the author‘s algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books, which are manifolds with codimension 2 submanifolds such that the complement fibres over a circle. The book concludes with an appendix by E. Winkelnkemper on the history of open books.
出版日期Book 1998
关键词K-theory; homology; knots; manifolds; open books; surgery
版次1
doihttps://doi.org/10.1007/978-3-662-12011-8
isbn_softcover978-3-642-08329-7
isbn_ebook978-3-662-12011-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 1998
The information of publication is updating

书目名称High-dimensional Knot Theory影响因子(影响力)




书目名称High-dimensional Knot Theory影响因子(影响力)学科排名




书目名称High-dimensional Knot Theory网络公开度




书目名称High-dimensional Knot Theory网络公开度学科排名




书目名称High-dimensional Knot Theory被引频次




书目名称High-dimensional Knot Theory被引频次学科排名




书目名称High-dimensional Knot Theory年度引用




书目名称High-dimensional Knot Theory年度引用学科排名




书目名称High-dimensional Knot Theory读者反馈




书目名称High-dimensional Knot Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:31:56 | 显示全部楼层
发表于 2025-3-22 03:08:00 | 显示全部楼层
发表于 2025-3-22 06:53:06 | 显示全部楼层
Localization and completion in ,-theoryy reducing the computation for a complicated ring to simpler rings (e.g. fields). The classic example of localization and completion is the Hasse-Minkowski principle by which quadratic forms over ℤ are related to quadratic forms over ℚ and the finite fields F. and the .-adic completions ., . of ℤ, ℚ
发表于 2025-3-22 11:57:35 | 显示全部楼层
Algebraic transversalityclic covers of compact manifolds and finite . complexes. Refer to Ranicki [244, Chap. 4] for a previous account of algebraic transversality: here, only the additional results required for the new applications are proved. The construction in Part Two of the algebraic invariants of knots will make use
发表于 2025-3-22 14:34:38 | 显示全部楼层
Noncommutative localizatione noncommutative rings. High-dimensional knot theory requires the noncommutative localization matrix inversion method of Cohn [53], [54]. The algebraic .- and .-theory invariants of codimension 2 embeddings frequently involve this type of localization of a polynomial ring, as will become apparent in
发表于 2025-3-22 18:29:13 | 显示全部楼层
Endomorphism ,-theoryith an endomorphism . : . → . is essentially the same as a module (., .) over the polynomial ring .[.], with the indeterminate . acting on . by . This correspondence will be used to relate the algebraic .-groups .. (...[.]) of the localizations ...[.] of .[.] to the .-groups of pairs (., .) with . a
发表于 2025-3-22 23:57:06 | 显示全部楼层
发表于 2025-3-23 01:51:30 | 显示全部楼层
Witt vectorstermines the endomorphism .-theory class. In Chap. 17 the Reidemeister torsion of an .-contractible finite f.g. .[., ..]-module chain complex . will be identified with the Witt vector determined by the Alexander polynomials. In the applications to knot theory in Chap. 33 . will be the cellular chain
发表于 2025-3-23 07:50:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 19:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表