找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: High Performance Computing; Second Latin America Carla Osthoff,Philippe Olivier Alexandre Navaux,Pe Conference proceedings 2015 Springer In

[复制链接]
楼主: Autopsy
发表于 2025-3-23 12:07:20 | 显示全部楼层
High Performance Computing978-3-319-26928-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-23 15:41:31 | 显示全部楼层
发表于 2025-3-23 21:48:14 | 显示全部楼层
Running Multi-relational Data Mining Processes in the Cloud: A Practical Approach for Social Networkss several times consumes much time. Thus, the automatic execution of each setting of parameters throughout parallelization techniques becomes essential. In this paper, we propose an approach named LPFlow4SN that models a MRDM process as a scientific workflow and then executes it in parallel in the
发表于 2025-3-24 00:59:22 | 显示全部楼层
发表于 2025-3-24 05:46:00 | 显示全部楼层
Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUsage of the machine by the simulation and the in situ analytics. We finally extend the usual in situ placement strategies to the case of in situ analytics running on a GPU and study their impact on both Gromacs performance and the resource usage of the machine. We show in particular that running in s
发表于 2025-3-24 09:51:04 | 显示全部楼层
发表于 2025-3-24 13:49:31 | 显示全部楼层
发表于 2025-3-24 16:32:23 | 显示全部楼层
发表于 2025-3-24 22:27:08 | 显示全部楼层
Porting a Numerical Atmospheric Model to a Cloud Serviceas needed are attractive for applications that execute traditionally in clusters or supercomputers. This paper presents our experiences of porting and executing a weather prediction application to the an IaaS cloud. We compared the execution of this application in our local cluster against the execu
发表于 2025-3-25 01:36:36 | 显示全部楼层
Determining the Real Capacity of a Desktop Cloudresearchers to harvest the capacity available by deploying opportunistic infrastructures, that is, infrastructures mostly supported by idle computing resources which run in parallel to tasks performed by the resource owner (end-user). In this paper we measure such usage in terms of CPU and RAM. The
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 08:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表