找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hierarchical Neural Networks for Image Interpretation; Sven Behnke Book 2003 Springer-Verlag Berlin Heidelberg 2003 cognition.computer vis

[复制链接]
查看: 40058|回复: 51
发表于 2025-3-21 19:50:56 | 显示全部楼层 |阅读模式
书目名称Hierarchical Neural Networks for Image Interpretation
编辑Sven Behnke
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Hierarchical Neural Networks for Image Interpretation;  Sven Behnke Book 2003 Springer-Verlag Berlin Heidelberg 2003 cognition.computer vis
描述.Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains...This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. ..Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks..
出版日期Book 2003
关键词cognition; computer vision; control; learning; neural architectures; neural network; neural network learni
版次1
doihttps://doi.org/10.1007/b11963
isbn_softcover978-3-540-40722-5
isbn_ebook978-3-540-45169-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

书目名称Hierarchical Neural Networks for Image Interpretation影响因子(影响力)




书目名称Hierarchical Neural Networks for Image Interpretation影响因子(影响力)学科排名




书目名称Hierarchical Neural Networks for Image Interpretation网络公开度




书目名称Hierarchical Neural Networks for Image Interpretation网络公开度学科排名




书目名称Hierarchical Neural Networks for Image Interpretation被引频次




书目名称Hierarchical Neural Networks for Image Interpretation被引频次学科排名




书目名称Hierarchical Neural Networks for Image Interpretation年度引用




书目名称Hierarchical Neural Networks for Image Interpretation年度引用学科排名




书目名称Hierarchical Neural Networks for Image Interpretation读者反馈




书目名称Hierarchical Neural Networks for Image Interpretation读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:01 | 显示全部楼层
发表于 2025-3-22 01:42:49 | 显示全部楼层
0302-9743 ed learning techniques. ..Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks..978-3-540-40722-5978-3-540-45169-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 05:27:37 | 显示全部楼层
Unsupervised Learning be designed manually. If multiple layers of abstraction are needed, the design complexity explodes with height, as the number of different feature arrays and the number of potential weights per feature increase exponentially.
发表于 2025-3-22 09:15:08 | 显示全部楼层
发表于 2025-3-22 16:53:15 | 显示全部楼层
发表于 2025-3-22 17:18:16 | 显示全部楼层
发表于 2025-3-22 22:19:39 | 显示全部楼层
发表于 2025-3-23 04:24:54 | 显示全部楼层
发表于 2025-3-23 07:24:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 06:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表