找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Heidelberger Jahrbücher; Universitäts-Gesellschaft Conference proceedings 1965 Springer-Verlag Berlin · Heidelberg 1965 Glauben.Johann Wol

[复制链接]
楼主: inroad
发表于 2025-3-23 11:58:05 | 显示全部楼层
发表于 2025-3-23 15:11:47 | 显示全部楼层
Wilhelm Gallasin Sect. .) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap. .). In this book, we mostly consider exterior and tensor products in vector spaces of dimension 1 or 2.
发表于 2025-3-23 20:34:24 | 显示全部楼层
Hans Reschkesider conditions that guarantee the existence of holomorphic sections with prescribed values. Unlike the open Riemann surface case (in which one has Theorem 3.11.5), a holomorphic line bundle need not have the positivity required for such a section to exist. For example, the space of holomorphic fun
发表于 2025-3-24 00:41:08 | 显示全部楼层
Gerhard Hess.). The first goal is the following Riemann surface analogue of the classical Riemann mapping theorem in the plane:.. (Riemann mapping theorem) . ℙ., . ℂ, . Δ={.∈ℂ||.|<1}..The second goal of this chapter is the fact that every Riemann surface . may be obtained by holomorphic attachment of tubes at e
发表于 2025-3-24 05:26:43 | 显示全部楼层
发表于 2025-3-24 08:57:48 | 显示全部楼层
in Sect. .) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap. .). In this book, we mostly consider exterior and tensor products in vector spaces of dimension 1 or 2.
发表于 2025-3-24 14:00:50 | 显示全部楼层
Wilhelm Gallasin Sect. .) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap. .). In this book, we mostly consider exterior and tensor products in vector spaces of dimension 1 or 2.
发表于 2025-3-24 17:34:25 | 显示全部楼层
发表于 2025-3-24 19:47:28 | 显示全部楼层
发表于 2025-3-25 00:17:47 | 显示全部楼层
Wilhelm DoerrOverview: Introduction to modern geometry.Presenting various techniques applied in the theoretical physics.Additional topics of the second edition are the modern language and modern view of Algebraic Geometry a978-3-642-09027-1978-3-540-71175-9Series ISSN 1864-5879 Series E-ISSN 1864-5887
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 16:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表