找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids; Howard Goldfine Reference work 2020 Springer Nature Swi

[复制链接]
楼主: False-Negative
发表于 2025-3-28 18:37:00 | 显示全部楼层
Natalie J. Garton,Michael R. Barerover time of a shallow water wave. This equation has its roots in Scott Russel’s horseback journey along the Edinburgh to Glasgow canal; he followed a wave created by the prow of a boat, which . refused to change its shape over miles. This revival in the 60’s was driven by a discovery of Kruskal and
发表于 2025-3-28 22:08:26 | 显示全部楼层
Otto Geigerone, {.., ..} = {.., ..} = 0 and {.., ..} = .., where 1 ≤ . ≤ .. For a mechanical interpretation, consider . unit mass particles on a circle that are connected by exponential springs. In [33], Bogoyavlensky proposed a Lie algebraic generalization, where the original Toda lattice corresponds to the r
发表于 2025-3-28 23:49:39 | 显示全部楼层
Claire Rossi,Hélène Cazzola,Nicola J. Holden,Yannick Rosseznctions on .. and (.., ..., .., .. ..., ..) are linear coordinates on ... He observed that if . and . are two first integrals of a mechanical system (defined on ..) then their . {.} is also a first integral. Notice that the Poisson bracket also allows one to describe the equations of motion in their
发表于 2025-3-29 03:49:22 | 显示全部楼层
发表于 2025-3-29 08:43:24 | 显示全部楼层
发表于 2025-3-29 15:02:01 | 显示全部楼层
发表于 2025-3-29 19:11:59 | 显示全部楼层
Howard Goldfine by the method of Example 2.1.8(i) as the Euler characteristic of suitable 2-extensions, called the . lying in.for r ≥ 1, where . is a Galois extension with group .(.). Actually, when . is a .-adic local field K. (.) is not a finitely generated .[.(.)]-module and so one applies the construction of E
发表于 2025-3-29 21:24:47 | 显示全部楼层
发表于 2025-3-30 01:07:04 | 显示全部楼层
发表于 2025-3-30 05:46:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 10:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表