找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Head and Neck Tumor Segmentation and Outcome Prediction; Second Challenge, HE Vincent Andrearczyk,Valentin Oreiller,Adrien Depeu Conference

[复制链接]
楼主: injurious
发表于 2025-3-27 01:00:44 | 显示全部楼层
发表于 2025-3-27 03:30:26 | 显示全部楼层
The Head and Neck Tumor Segmentation Based on 3D U-Net,head and neck tumor is the key step to make the appropriate radiotherapy schedule. However, it is a very time consuming and boring work. Therefore, automatic segmenting the head and neck tumor is of the very significant work. This paper adopts the U-Net network used in medical image segmentation com
发表于 2025-3-27 06:01:13 | 显示全部楼层
发表于 2025-3-27 13:03:04 | 显示全部楼层
发表于 2025-3-27 15:38:34 | 显示全部楼层
发表于 2025-3-27 20:03:08 | 显示全部楼层
发表于 2025-3-28 01:48:40 | 显示全部楼层
发表于 2025-3-28 03:26:03 | 显示全部楼层
,Deep Learning Based GTV Delineation and Progression Free Survival Risk Score Prediction for Head anerapeutic dose and minimization of therapy induced damage to healthy tissue. Radiomics models have proven their power for detection of useful tumors characteristics that can be used for patient prognosis. We studied the ability of deep learning models for segmentation of gross tumor volumes (GTV) an
发表于 2025-3-28 09:15:41 | 显示全部楼层
发表于 2025-3-28 13:39:35 | 显示全部楼层
PET/CT Head and Neck Tumor Segmentation and Progression Free Survival Prediction Using Deep and Macsing two 3D models for Head and Neck tumor segmentation in CT and FDG-PET images. A Progression Free Survival (PFS) prediction, based on a Gaussian Process Regression (GPR) model was design on Matlab. Radiomic features such as Haralick textures, geometrical and statistical data were extracted from t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 15:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表