找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Function Theory; Sheldon Axler,Paul Bourdon,Wade Ramey Textbook 19921st edition Springer Science+Business Media New York 1992 Har

[复制链接]
楼主: 决绝
发表于 2025-3-27 00:40:16 | 显示全部楼层
发表于 2025-3-27 01:36:49 | 显示全部楼层
Bounded Harmonic Functions,Liouville’s Theorem in complex analysis states that a bounded holo-morphic function on . is constant. A similar result holds for harmonic functions on ... The simple proof given below is taken from Edward Nelson’s paper [7], which is one of the rare mathematics papers not containing a single mathematical symbol.
发表于 2025-3-27 05:21:06 | 显示全部楼层
Positive Harmonic Functions,In Chapter 2 we proved that a bounded harmonic function on .. is constant. We now improve that result.
发表于 2025-3-27 13:03:43 | 显示全部楼层
发表于 2025-3-27 15:16:25 | 显示全部楼层
Harmonic Hardy Spaces,In Chapter 1 we defined the Poisson integral of a function . ∈ . to be the function . defined on . by ..
发表于 2025-3-27 18:47:16 | 显示全部楼层
发表于 2025-3-27 23:47:49 | 显示全部楼层
Annular Regions,An . is a set of the form {. ∈ .. : .. < ∈. ∈ < ..}; here .. ∈ [0, ∞) and .. ∈ (0, ∞]. Thus an annular region is the region between two concentric spheres, or is a punctured ball, or is the complement of a closed ball, or is .. {0}.
发表于 2025-3-28 04:12:35 | 显示全部楼层
Harmonic Functions on Half-Spaces,at on . One advantage of . over . is the dilation-invariance of . We have already put this to good use in the section . in Chapter 2. Some disadvantages: . is not compact and Lebesgue measure on . is not finite.
发表于 2025-3-28 08:41:03 | 显示全部楼层
发表于 2025-3-28 13:29:15 | 显示全部楼层
The Dirichlet Problem and Boundary Behavior,techniques we developed for the special domains . and . will thus not be available. Most of this chapter will concern the Dirichlet problem. In the last section, however, we will study a different kind of boundary behavior problem—the construction of harmonic functions on . that cannot be extended harmonically across any part of ∂Ω.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 15:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表