书目名称 | Harmonic Analysis on the Heisenberg Group | 编辑 | Sundaram Thangavelu | 视频video | | 丛书名称 | Progress in Mathematics | 图书封面 |  | 描述 | .The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group...Several results in this monograph appear for the first time in book form, and some theorems have not appeared elsewhere. The detailed discussion of the representation theory of the Heisenberg group goes well beyond the basic Stone-von Neumann theory, and its relations to classical special functions is invaluable for any reader interested in this group. Topic covered include the Plancherel and Paley—Wiener theorems, spectral theory of the sublaplacian, Wiener-Tauberian theorems, Bochner—Riesz means and multipliers for the Fourier transform...Thangavelu’s exposit | 出版日期 | Book 1998 | 关键词 | Differential Geometry; Fourier transform; Gelfand pair; Lie; Quantum Physics; Representation theory; algeb | 版次 | 1 | doi | https://doi.org/10.1007/978-1-4612-1772-5 | isbn_softcover | 978-1-4612-7275-5 | isbn_ebook | 978-1-4612-1772-5Series ISSN 0743-1643 Series E-ISSN 2296-505X | issn_series | 0743-1643 | copyright | Springer Science+Business Media New York 1998 |
The information of publication is updating
|
|