找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General; Audrey Terras Textbook 2016Latest ed

[复制链接]
查看: 9461|回复: 35
发表于 2025-3-21 16:07:44 | 显示全部楼层 |阅读模式
书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General
编辑Audrey Terras
视频video
概述New edition extensively revised and updated.Includes many new figures and examples.New topics include random matrix theory and quantum chaos.Includes recent work on modular forms and their correspondi
图书封面Titlebook: Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General;  Audrey Terras Textbook 2016Latest ed
描述.This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel‘s upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices..Manycorrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-
出版日期Textbook 2016Latest edition
关键词Eisenstein series; Harish-Chandra c-function; Helgason-Fourier transform; Poisson summation formula; Sel
版次2
doihttps://doi.org/10.1007/978-1-4939-3408-9
isbn_softcover978-1-4939-8042-0
isbn_ebook978-1-4939-3408-9
copyrightSpringer Science+Business Media New York 2016
The information of publication is updating

书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General影响因子(影响力)




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General影响因子(影响力)学科排名




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General网络公开度




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General网络公开度学科排名




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General被引频次




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General被引频次学科排名




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General年度引用




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General年度引用学科排名




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General读者反馈




书目名称Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:49:16 | 显示全部楼层
发表于 2025-3-22 01:29:36 | 显示全部楼层
发表于 2025-3-22 08:10:48 | 显示全部楼层
Audrey Terrasponsive behaviour. However, current state-of-the-art methods are heavily dependant on physics-driven feedback to learn character behaviours and are not transferable to portraying behaviour such as social interactions and gestures. In this paper, we present a novel approach to data-driven character a
发表于 2025-3-22 10:37:19 | 显示全部楼层
发表于 2025-3-22 16:25:10 | 显示全部楼层
发表于 2025-3-22 17:41:39 | 显示全部楼层
发表于 2025-3-22 21:55:58 | 显示全部楼层
发表于 2025-3-23 01:55:13 | 显示全部楼层
Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General
发表于 2025-3-23 07:23:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 14:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表