找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Analysis on Spaces of Homogeneous Type; Donggao Deng,Yongsheng Han Book 2009 Springer-Verlag Berlin Heidelberg 2009 Calderon-Zygm

[复制链接]
查看: 33508|回复: 39
发表于 2025-3-21 17:22:45 | 显示全部楼层 |阅读模式
书目名称Harmonic Analysis on Spaces of Homogeneous Type
编辑Donggao Deng,Yongsheng Han
视频video
概述With a preface by Yves Meyer.Includes supplementary material:
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Harmonic Analysis on Spaces of Homogeneous Type;  Donggao Deng,Yongsheng Han Book 2009 Springer-Verlag Berlin Heidelberg 2009 Calderon-Zygm
描述This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ¨ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.
出版日期Book 2009
关键词Calderon-Zygmund operator; Calderon’s identity; Fourier transform; Littlewood-Paley analysis; T1 theorem
版次1
doihttps://doi.org/10.1007/978-3-540-88745-4
isbn_softcover978-3-540-88744-7
isbn_ebook978-3-540-88745-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称Harmonic Analysis on Spaces of Homogeneous Type影响因子(影响力)




书目名称Harmonic Analysis on Spaces of Homogeneous Type影响因子(影响力)学科排名




书目名称Harmonic Analysis on Spaces of Homogeneous Type网络公开度




书目名称Harmonic Analysis on Spaces of Homogeneous Type网络公开度学科排名




书目名称Harmonic Analysis on Spaces of Homogeneous Type被引频次




书目名称Harmonic Analysis on Spaces of Homogeneous Type被引频次学科排名




书目名称Harmonic Analysis on Spaces of Homogeneous Type年度引用




书目名称Harmonic Analysis on Spaces of Homogeneous Type年度引用学科排名




书目名称Harmonic Analysis on Spaces of Homogeneous Type读者反馈




书目名称Harmonic Analysis on Spaces of Homogeneous Type读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:17:33 | 显示全部楼层
Harmonic Analysis on Spaces of Homogeneous Type978-3-540-88745-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 01:51:51 | 显示全部楼层
information from large computer grids, using software agents and genetic computation. A prototype was created as a first step towards communities of agents that will collaborate to learn log-file structures and exchange knowledge across organizational domains.
发表于 2025-3-22 06:07:52 | 显示全部楼层
,The Boundedness of Calderón-Zygmund Operators on Wavelet Spaces,ygmund operators whose kernels satisfy an additional smoothness condition are bounded on .. This result will be a crucial tool to provide wavelet expansions of functions and distributions on spaces of homogeneous type in the next chapter..We first introduce test functions on spaces of homogeneous type.
发表于 2025-3-22 12:36:23 | 显示全部楼层
发表于 2025-3-22 15:40:23 | 显示全部楼层
Donggao Deng,Yongsheng HanWith a preface by Yves Meyer.Includes supplementary material:
发表于 2025-3-22 21:01:07 | 显示全部楼层
发表于 2025-3-22 22:50:36 | 显示全部楼层
发表于 2025-3-23 03:11:21 | 显示全部楼层
Book 2009nted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.
发表于 2025-3-23 08:32:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 20:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表