找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Analysis on Semi-Simple Lie Groups I; Garth Warner Book 1972 Springer-Verlag Berlin Heidelberg 1972 Analysis.Groups.Harmonische A

[复制链接]
查看: 24860|回复: 35
发表于 2025-3-21 17:00:10 | 显示全部楼层 |阅读模式
书目名称Harmonic Analysis on Semi-Simple Lie Groups I
编辑Garth Warner
视频video
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Harmonic Analysis on Semi-Simple Lie Groups I;  Garth Warner Book 1972 Springer-Verlag Berlin Heidelberg 1972 Analysis.Groups.Harmonische A
描述The representation theory of locally compact groups has been vig­ orously developed in the past twenty-five years or so; of the various branches of this theory, one of the most attractive (and formidable) is the representation theory of semi-simple Lie groups which, to a great extent, is the creation of a single man: Harish-Chandra. The chief objective of the present volume and its immediate successor is to provide a reasonably self-contained introduction to Harish-Chandra‘s theory. Granting cer­ tain basic prerequisites (cf. infra), we have made an effort to give full details and complete proofs of the theorems on which the theory rests. The structure of this volume and its successor is as follows. Each book is divided into chapters; each chapter is divided into sections; each section into numbers. We then use the decimal system of reference; for example, 1. 3. 2 refers to the second number in the third section of the first chapter. Theorems, Propositions, Lemmas, and Corollaries are listed consecutively throughout any given number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Exam­ ples scattered throughout the text; the reader, if
出版日期Book 1972
关键词Analysis; Groups; Harmonische Analyse; Lie; Lie Groups; Liesche Gruppe; algebra; cohomology; finite group; fo
版次1
doihttps://doi.org/10.1007/978-3-642-50275-0
isbn_softcover978-3-642-50277-4
isbn_ebook978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1972
The information of publication is updating

书目名称Harmonic Analysis on Semi-Simple Lie Groups I影响因子(影响力)




书目名称Harmonic Analysis on Semi-Simple Lie Groups I影响因子(影响力)学科排名




书目名称Harmonic Analysis on Semi-Simple Lie Groups I网络公开度




书目名称Harmonic Analysis on Semi-Simple Lie Groups I网络公开度学科排名




书目名称Harmonic Analysis on Semi-Simple Lie Groups I被引频次




书目名称Harmonic Analysis on Semi-Simple Lie Groups I被引频次学科排名




书目名称Harmonic Analysis on Semi-Simple Lie Groups I年度引用




书目名称Harmonic Analysis on Semi-Simple Lie Groups I年度引用学科排名




书目名称Harmonic Analysis on Semi-Simple Lie Groups I读者反馈




书目名称Harmonic Analysis on Semi-Simple Lie Groups I读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:55:42 | 显示全部楼层
978-3-642-50277-4Springer-Verlag Berlin Heidelberg 1972
发表于 2025-3-22 00:37:58 | 显示全部楼层
Harmonic Analysis on Semi-Simple Lie Groups I978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-22 08:22:50 | 显示全部楼层
发表于 2025-3-22 10:08:39 | 显示全部楼层
Finite Dimensional Representations of a Semi-Simple Lie Group,presentations to separate points (cf. 3.1.1). In fact . will, in general, admit no non-trivial finite dimensional unitary representations (cf. number 4.3.2). Nevertheless, despite these apparently discouraging facts, the finite dimensional representations of . are important — this will be elaborated on below.
发表于 2025-3-22 14:10:55 | 显示全部楼层
发表于 2025-3-22 17:13:46 | 显示全部楼层
发表于 2025-3-23 00:26:55 | 显示全部楼层
发表于 2025-3-23 02:41:27 | 显示全部楼层
0072-7830 n number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Exam­ ples scattered throughout the text; the reader, if978-3-642-50277-4978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-23 06:05:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 20:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表