找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Analysis of Spherical Functions on Real Reductive Groups; Ramesh Gangolli,Veeravalli S. Varadarajan Book 1988 Springer-Verlag Ber

[复制链接]
查看: 50081|回复: 39
发表于 2025-3-21 16:25:13 | 显示全部楼层 |阅读模式
书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups
编辑Ramesh Gangolli,Veeravalli S. Varadarajan
视频video
丛书名称Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
图书封面Titlebook: Harmonic Analysis of Spherical Functions on Real Reductive Groups;  Ramesh Gangolli,Veeravalli S. Varadarajan Book 1988 Springer-Verlag Ber
描述Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930‘s. However its full development did not begin until the 1950‘s when Gel‘fand and Harish­ Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra‘s theory of spherical functions was essentially complete in the late 1950‘s, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on
出版日期Book 1988
关键词Fourier analysis; Potential; differential equation; differential operator; function space; functional equ
版次1
doihttps://doi.org/10.1007/978-3-642-72956-0
isbn_softcover978-3-642-72958-4
isbn_ebook978-3-642-72956-0
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups影响因子(影响力)




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups影响因子(影响力)学科排名




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups网络公开度




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups网络公开度学科排名




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups被引频次




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups被引频次学科排名




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups年度引用




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups年度引用学科排名




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups读者反馈




书目名称Harmonic Analysis of Spherical Functions on Real Reductive Groups读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:55:47 | 显示全部楼层
发表于 2025-3-22 04:11:06 | 显示全部楼层
Ramesh Gangolli,Veeravalli S. VaradarajanAusgangspunkte für eine Beurteilung aktueller Infrastrukturen sind nicht nur bei den vorhandenen Auszeichnungssprachen vorhanden. Daneben oder z.T. darauf aufbauend existieren auch „funktionale Elemente“, die für einen letztlich umfassenden Überblick über die technischen Gegebenheiten von Online-Märkten ebenfalls zunächst untersucht werden müssen.
发表于 2025-3-22 08:32:32 | 显示全部楼层
发表于 2025-3-22 11:59:30 | 显示全部楼层
Asymptotic Behaviour of Elementary Spherical Functions,This chapter, as well as the next one, will be devoted to the formulation and proofs of the main theorems of the L. harmonic analysis of spherical functions. At the center of the theory is the Harish-Chandra transform (see §3.3) . where
发表于 2025-3-22 16:33:55 | 显示全部楼层
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folgehttp://image.papertrans.cn/h/image/424277.jpg
发表于 2025-3-22 19:12:36 | 显示全部楼层
Ramesh Gangolli,Veeravalli S. Varadarajan Jede Ebene „versteht“ dabei auf Grund einer semantischen Verwertbarkeit zumindest das, was von der unmittelbar nächsthöheren Ebene kommuniziert wird und gibt an nachfolgende Ebenen Daten weiter, die dort „verstanden“ werden können.
发表于 2025-3-22 21:49:49 | 显示全部楼层
发表于 2025-3-23 02:25:22 | 显示全部楼层
发表于 2025-3-23 09:27:28 | 显示全部楼层
-Theory of Harish-Chandra Transform. Fourier Analysis on the Spaces ,(,),the Harish-Chandra transforms of functions in a certain family of spaces .(.), 0 < . < 2. For . = 2, . is merely the space .(.), while for . = 1, we get the L.-analogue of .(.). The end result will be a complete characterization of the algebra of transforms of the spaces.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 16:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表