找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Analysis and Representations of Semisimple Lie Groups; Lectures given at th J. A. Wolf,M. Cahen,M. Wilde Book 1980 D. Reidel Publi

[复制链接]
楼主: ODDS
发表于 2025-3-28 16:49:15 | 显示全部楼层
Finite-Dimensional Representation Theoryl Theorem for compact semisimple groups in Section 15. Finally, in Section 16, we specialize to the decomposition of the . space of a compact symmetric space and give Cartan’s highest weight theory for class one representations.
发表于 2025-3-28 22:39:43 | 显示全部楼层
发表于 2025-3-29 02:26:25 | 显示全部楼层
General Backgroundions: (1) What sort of regularity properties should . possess for the decomposition to make any sense at all?; (2) In what sense does the series converge? These questions (or their analogues) will persist throughout our investigations.
发表于 2025-3-29 04:56:00 | 显示全部楼层
Infinite-Dimensional Representationsct subgroup . ⊂ G has multiplicity .(к, π|.) ≤ dim к. This yields up the infinitesimal character χ.: .(g)→ ℂ and the distribution character .: C.(G) → ℂ, and consequently the differential equations. for .which are the starting point for serious harmonic analysis on ..
发表于 2025-3-29 10:32:57 | 显示全部楼层
Nonlinear Representations of Lie Groups and ApplicationsStill, what more specific motivations do we have to study nonlinear representations of Lie groups in linear spaces? We may of course reverse the argument and ask why in the past did we study mainly linear representations of a nonlinear object?!
发表于 2025-3-29 14:01:29 | 显示全部楼层
发表于 2025-3-29 18:41:56 | 显示全部楼层
发表于 2025-3-29 19:56:43 | 显示全部楼层
发表于 2025-3-30 00:47:36 | 显示全部楼层
Infinite-Dimensional Representations.. The basic fact for an irreducible unitary representation . of . on a Hilbert space ℋ, is that every irreducible representation к of a maximal compact subgroup . ⊂ G has multiplicity .(к, π|.) ≤ dim к. This yields up the infinitesimal character χ.: .(g)→ ℂ and the distribution character .: C.(G) →
发表于 2025-3-30 05:56:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 13:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表