找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Analysis and Hypergroups; K. A. Ross,A. I. Singh,N. J. Wildberger Conference proceedings 1998 Springer Science+Business Media New

[复制链接]
楼主: Stenosis
发表于 2025-3-28 17:01:12 | 显示全部楼层
Actions of Finite Hypergroups and Examples,tions and then proceed to classify irreducible *-actions of hypergroups of order two, the class and character hypergroups of S3 and of the Golden hypergroup —which arises from the pentagon when viewed as a strongly regular graph.
发表于 2025-3-28 22:50:07 | 显示全部楼层
发表于 2025-3-28 23:09:15 | 显示全部楼层
Wavelets on Hypergroups,ergroup and the hyper-group associated with spherical mean operator. We define on. wavelets and a continuous wavelet transform, we prove Plancherel and inversion formulas for this transform, and using coherent states we characterize the image space of this transform.
发表于 2025-3-29 05:13:26 | 显示全部楼层
https://doi.org/10.1007/978-0-8176-4348-5Approximation; Mathematica; Riemann integral; Taylor‘s theorem; calculus; derivative; differential equatio
发表于 2025-3-29 10:20:04 | 显示全部楼层
De Branges Modules in ,,(,,),One of the most important results in invariant subspace theory is the famous “Beurling’s Theorem” [1], characterizing the invariant subspaces of the shift operator.(i.e. multiplication by the coordinate function . on the Hardy space ..(T).
发表于 2025-3-29 15:10:28 | 显示全部楼层
发表于 2025-3-29 18:05:19 | 显示全部楼层
Disintegration of Measures,Let ., be measurable spaces and let . be a measure on the product measure space. A . of .is a representation .where for each . in .. is a measure on . The meaning of this formula is that for each ? in some specified class of function on.×., ..
发表于 2025-3-29 21:24:11 | 显示全部楼层
Harmonic Analysis and Functional Equations,Functional equations occur in many parts of mathematics, also in harmonic analysis. As an example we mention that the complex exponential function 7 :. ? exp (?x) for any ? ∈ R is a solution of Cauchy’s functional equation
发表于 2025-3-30 03:33:13 | 显示全部楼层
发表于 2025-3-30 04:59:45 | 显示全部楼层
978-1-4899-0158-3Springer Science+Business Media New York 1998
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-2 18:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表