找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Harmonic Analysis and Hypergroups; K. A. Ross,A. I. Singh,N. J. Wildberger Conference proceedings 1998 Springer Science+Business Media New

[复制链接]
楼主: Stenosis
发表于 2025-3-28 17:01:12 | 显示全部楼层
Actions of Finite Hypergroups and Examples,tions and then proceed to classify irreducible *-actions of hypergroups of order two, the class and character hypergroups of S3 and of the Golden hypergroup —which arises from the pentagon when viewed as a strongly regular graph.
发表于 2025-3-28 22:50:07 | 显示全部楼层
发表于 2025-3-28 23:09:15 | 显示全部楼层
Wavelets on Hypergroups,ergroup and the hyper-group associated with spherical mean operator. We define on. wavelets and a continuous wavelet transform, we prove Plancherel and inversion formulas for this transform, and using coherent states we characterize the image space of this transform.
发表于 2025-3-29 05:13:26 | 显示全部楼层
https://doi.org/10.1007/978-0-8176-4348-5Approximation; Mathematica; Riemann integral; Taylor‘s theorem; calculus; derivative; differential equatio
发表于 2025-3-29 10:20:04 | 显示全部楼层
De Branges Modules in ,,(,,),One of the most important results in invariant subspace theory is the famous “Beurling’s Theorem” [1], characterizing the invariant subspaces of the shift operator.(i.e. multiplication by the coordinate function . on the Hardy space ..(T).
发表于 2025-3-29 15:10:28 | 显示全部楼层
发表于 2025-3-29 18:05:19 | 显示全部楼层
Disintegration of Measures,Let ., be measurable spaces and let . be a measure on the product measure space. A . of .is a representation .where for each . in .. is a measure on . The meaning of this formula is that for each ? in some specified class of function on.×., ..
发表于 2025-3-29 21:24:11 | 显示全部楼层
Harmonic Analysis and Functional Equations,Functional equations occur in many parts of mathematics, also in harmonic analysis. As an example we mention that the complex exponential function 7 :. ? exp (?x) for any ? ∈ R is a solution of Cauchy’s functional equation
发表于 2025-3-30 03:33:13 | 显示全部楼层
发表于 2025-3-30 04:59:45 | 显示全部楼层
978-1-4899-0158-3Springer Science+Business Media New York 1998
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 21:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表