找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hardy Spaces on the Euclidean Space; Akihito Uchiyama Book 2001 Springer Japan 2001 Dimension.Hardy Spaces.bounded mean oscillation.maximu

[复制链接]
楼主: hypothyroidism
发表于 2025-3-28 16:00:11 | 显示全部楼层
Operators on ,,,We introduce several important operators on .. and give easy estimates to them. As for the definitions of ., . and г(., δ) recall Section 0. Recall that {the volume of the unit ball in ..} = ..
发表于 2025-3-28 20:55:08 | 显示全部楼层
发表于 2025-3-28 23:59:43 | 显示全部楼层
发表于 2025-3-29 06:57:27 | 显示全部楼层
Hardy-Littlewood-Fefferman-Stein type inequalities, 1,Theorem 6.A . Let . ∈ {2,3,4, …} and . > 0. Let . (z) be a harmonic function defined on the unit ball of ... Then
发表于 2025-3-29 08:55:29 | 显示全部楼层
发表于 2025-3-29 11:39:41 | 显示全部楼层
Hardy-Littlewood-Fefferman-Stein type inequalities, 3,(You can skip this section if you are not interested in Section 10.) Theorem 8.1.
发表于 2025-3-29 18:23:18 | 显示全部楼层
,Good λ inequalities for nontangential maximal functions and ,-functions of harmonic functions,For a harmonic function .) on .+., let .δ. be as in (0.2) and let.where ∇ = (..,…,..). We will show the following precise relations between .δ. and .δ (.|∇.|).
发表于 2025-3-29 22:32:29 | 显示全部楼层
A direct proof of ,,where . (In (12.3), .) denotes the Poisson kernel.) Since . dominates . by (10.19), (12.1) follows from Lemma 2.2 (with . = 1) and Theorem 2.2. In this section, we explain C. Fefferman’s direct proof of (12.1), which is one of the oldest proofs of his ..-BMO duality theorem. (Another one of the oldest proofs will be explained in Section 19.)
发表于 2025-3-30 01:52:25 | 显示全部楼层
A direct proof of,, where . is defined by (12.3) and . Since . dominates . by Theorems 4.1 and 9.3, we have already obtained (13.1). In this section, we give a direct proof of (13.1) by modifying the argument of L. Carleson [76] and by using the ideas in .. Th. Varopoulos [77], P. W. Jones [78] and J. B. Garnett-P. W. Jones [82].
发表于 2025-3-30 05:44:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 21:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表