找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbuch des Umweltschutzes und der Umweltschutztechnik; Band 2: Produktions- Heinz Brauer Book 1996 Springer-Verlag Berlin Heidelberg 1996

[复制链接]
楼主: Sediment
发表于 2025-3-26 22:42:43 | 显示全部楼层
发表于 2025-3-27 03:38:43 | 显示全部楼层
R. Jansen,P. Külpmannntities and relation types. Most existing methods only concentrate on knowledge triples, ignoring logic rules which contain rich background knowledge. Although there has been some work aiming at leveraging both knowledge triples and logic rules, they ignore the transitivity and asymmetry of logic ru
发表于 2025-3-27 05:33:59 | 显示全部楼层
发表于 2025-3-27 13:01:08 | 显示全部楼层
发表于 2025-3-27 17:05:49 | 显示全部楼层
F. Mosers, graph neural networks (GNNs) have been successfully applied in many embedding-based EA methods. However, existing GNN-based methods either suffer from the structural heterogeneity issue that especially appears in the real KG distributions or ignore the heterogeneous representation learning for un
发表于 2025-3-27 18:39:38 | 显示全部楼层
obtained from illegal activities. Although recent approaches based on Graph Neural Networks (GNNs) have shown remarkable achievements in fraud detection, investigating cryptocurrency transaction networks is subject to the following challenges: 1) There is a lack of useful node features as cryptocur
发表于 2025-3-27 21:57:19 | 显示全部楼层
H. J. Haepp,W. Pollmanng imbalanced data; association; privacy and security; supervised learning; novel algorithms; mining multi-media/multi-dimensional data; application; mining grap978-3-030-47425-6978-3-030-47426-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-28 04:33:20 | 显示全部楼层
nique to capture the general pattern underlying the data, thus guaranteeing the model robustness under some data missing circumstances. Extensive experiments on three widely used citation network datasets show that our proposed method has achieved or matched state-of-the-art results on link predicti
发表于 2025-3-28 09:03:25 | 显示全部楼层
E. Gock,J. Kähler,V. Vogtormal data. Second, we adopt Spatial-Temporal Transformer with distinct attention modules to detect diverse anomalies. Extensive experiments on five real-world datasets are conducted, the results show that our method is superior to existing state-of-the-art approaches.
发表于 2025-3-28 11:00:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 20:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表